Advertisement

Optics and Spectroscopy

, Volume 124, Issue 4, pp 478–482 | Cite as

X-Ray Spectral Studies of the Interface Interaction in CuOx/MWCNTs Nanocomposite

  • V. A. Shmatko
  • A. A. Ulyankina
  • N. V. Smirnova
  • G. E. Yalovega
Condensed-Matter Spectroscopy
  • 11 Downloads

Abstract

Results of a comprehensive study of the interface interaction of a nanostructured CuOx and multiwalled carbon nanotubes (MWCNTs) in CuOx/MWCNT nanocomposite by X-ray absorption spectroscopy (XANES, NEXAFS) and X-ray photoelectron spectroscopy (XPS) methods using a synchrotron radiation are presented. It is established that a nanostructured CuOx in CuOx/MWCNT nanocomposite is predominantly formed by CuO and has the form of flakelike particles 200–500 nm in size uniformly dispersed over an array of nanotubes. A chemical interaction of CuOx and nanotubes with formation of covalent carbon–oxygen bonds, which does not lead to a significant destruction of the outer layers of carbon nanotubes, is observed at the interfaces of the nanocomposite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. B. Wen, F. Yu, T. You, L. Zhu, L. Zhang, and Y. P. Wu, Mater. Res. Bull. 74, 241 (2016).CrossRefGoogle Scholar
  2. 2.
    H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, Nat. Commun. 3, 917 (2012).CrossRefADSGoogle Scholar
  3. 3.
    J. Zheng, Q. Zhang, X. He, M. Gao, X. Ma, and G. Li, Proc. Eng. 36, 235 (2012).CrossRefGoogle Scholar
  4. 4.
    P. Pannopard, P. Khongpracha, M. Probst, and J. Limtrakul, J. Mol. Graphics Modell. 28, 62 (2009).CrossRefGoogle Scholar
  5. 5.
    K. D. Shitole, R. K. Nainani, and P. Thakur, Defence Sci. J. 63, 435 (2013).CrossRefGoogle Scholar
  6. 6.
    M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang, and H. Dai, Nat. Commun. 5, 4695 (2014).CrossRefGoogle Scholar
  7. 7.
    R. R. Salunkhe, J. J. Lin, V. Malgras, S. X. Dou, J. H. Kim, and Y. Yamauchi, Nano Energy 11, 211 (2015).CrossRefGoogle Scholar
  8. 8.
    X. Wang, F. Zhang, B. Xia, X. Zhu, J. Chen, S. Qiu, P. Zhang, and J. Li, Solid State Sci. 11, 655 (2009).CrossRefADSGoogle Scholar
  9. 9.
    S. N. Nesov, V. V. Bolotov, P. M. Korusenko, S. N. Povoroznyuk, and O. Yu. Vilkov, Phys. Solid State 58, 997 (2016).CrossRefADSGoogle Scholar
  10. 10.
    G. E. Yalovega, T. N. Myasoedova, V. A. Shmatko, M. M. Brzhezinskaya, and Yu. V. Popov, Appl. Surf. Sci. 372, 93 (2016).CrossRefADSGoogle Scholar
  11. 11.
    V. Shmatko, D. Leontyeva, N. Nevzorova, N. Smirnova, M. Brzhezinskaya, and G. Yalovega, J. Electron Spectrosc. Relat. Phenom. (2017). doi 10.1016/j.elspec.2017.03.016Google Scholar
  12. 12.
    L. A. Avakyan, A. S. Manukyan, A. A. Mirzakhanyan, E. G. Sharoyan, Y. V. Zubavichus, A. L. Trigub, N. A. Kolpacheva, and L. A. Bugaev, Opt. Spectrosc. 114, 347 (2013).CrossRefADSGoogle Scholar
  13. 13.
    A. N. Kravtsova, I. S. Rodina, and A. N. Mansur, Opt. Spectrosc. 96, 853 (2004).CrossRefADSGoogle Scholar
  14. 14.
    G. E. Yalovega and A. V. Soldatov, Opt. Spectrosc. 85, 898 (1998).ADSGoogle Scholar
  15. 15.
    A. B. Kuriganova, D. V. Leontyeva, S. Ivanov, A. Bund, and N. V. Smirnova, J. Appl. Electrochem. 46, 1245 (2016).CrossRefGoogle Scholar
  16. 16.
    W. Gudat and C. Kunz, Phys. Rev. Lett. 29, 169 (1972).CrossRefADSGoogle Scholar
  17. 17.
    V. V. Mesilov, V. R. Galakhov, B. A. Gizhevskii, A. S. Semenova, D. G. Kellerman, M. Raekers, and M. Neumann, Phys. Solid State 55, 943 (2013).CrossRefADSGoogle Scholar
  18. 18.
    B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Ulyankina, I. Leontyev, O. Maslova, M. Allix, A. Rakhmatullin, N. Nevzorova, R. Valeev, G. Yalovega, and N. Smirnova, Mater. Sci. Semicond. Process 73, 111 (2018).CrossRefGoogle Scholar
  20. 20.
    R. P. Wijesundera, M. Hidaka, K. Koga, J.-Y. Choi, and N. E. Sung, Ceram.-Silikáty 54, 19 (2010).Google Scholar
  21. 21.
    A. Gaur and B. D. Shrivastava, Acta Phys. Polon. A 121, 647 (2012).CrossRefGoogle Scholar
  22. 22.
    H. Liu, F. Zeng, S. Gao, G. Wang, C. Song, and F. Pan, Phys. Chem. Chem. Phys. 15, 13153 (2013).CrossRefGoogle Scholar
  23. 23.
    V. N. Sivkov, A. M. Ob’edkov, O. V. Petrova, S. V. Nekipelov, K. V. Kremlev, B. S. Kaverin, N. M. Semenov, and S. A. Gusev, Phys. Solid State 57, 197 (2015).CrossRefADSGoogle Scholar
  24. 24.
    M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bashkin, and E. Bogoslavskaja, J. Electron Spectrosc. Relat. Phenom. 196, 99 (2014).CrossRefGoogle Scholar
  25. 25.
    V. V. Bolotov, S. N. Nesov, P. M. Korusenko, and S. N. Povoroznyuk, Phys. Solid State 56, 1899 (2014).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Shmatko
    • 1
  • A. A. Ulyankina
    • 2
  • N. V. Smirnova
    • 2
  • G. E. Yalovega
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Platov South Russian State Polytechnic UniversityNovocherkasskRussia

Personalised recommendations