Advertisement

Optics and Spectroscopy

, Volume 124, Issue 4, pp 462–467 | Cite as

Chemical Shift of the Kα1 and Kα2 Lines of the X-ray Emission Spectrum of Yb(II)/Yb(III) Fluorides: a Quantum-Chemical Investigation

  • V. M. Shakhova
  • S. G. Semenov
  • Yu. V. Lomachuk
  • Yu. A. Demidov
  • L. V. Skripnikov
  • N. S. Mosyagin
  • A. V. Zaitsevskii
  • A. V. Titov
Spectroscopy of Atoms and Molecules
  • 12 Downloads

Abstract

Chemical shifts of the Kα1 and Kα2 lines (the 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 transitions, respectively) of the X-ray emission spectrum of the Yb atom in fluorides have been calculated by ab initio modeling the electronic structure. The valence transition Yb(II) → Yb(III) has been analyzed by examples of YbF2, YbF3, and Yb2F4 molecules and YbF2+ cation. The relativistic pseudopotential and basis sets corresponding to it have been constructed for the ytterbium atom. They were used in calculations by the two-component noncollinear version of the density functional theory (DFT) with the PBE0 exchange-correlation functional. Results for the three-coordinated Yb(II) in the FYbF2YbF dimer demonstrated a very weak dependence of the chemical shift on the coordination number of the Yb atom and on the molecular association of ytterbium difluoride. Chemical shifts of the X-ray emission spectrum for the ytterbium compound are related mainly to the change in the occupation of the 4 f shell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. I. Sumbaev, Sov. Phys. Usp. 21, 141 (1978).CrossRefADSGoogle Scholar
  2. 2.
    W. C. Ermler, R. B. Ross, and P. A. Christiansen, Adv. Quantum Chem. 19, 139 (1988).CrossRefADSGoogle Scholar
  3. 3.
    H. Stoll, B. Metz, and M. Dolg, J. Comput. Chem. 23, 767 (2002).CrossRefGoogle Scholar
  4. 4.
    N. S. Mosyagin, A. V. Zaitsevskii, and A. V. Titov, Int. Rev. At. Mol. Phys. 1, 63 (2010).Google Scholar
  5. 5.
    A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359 (1999).CrossRefGoogle Scholar
  6. 6.
    N. S. Mosyagin et al., Int. J. Quantum Chem. 116, 301 (2016).CrossRefGoogle Scholar
  7. 7.
    A. V. Titov and N. S. Mosyagin, arXiv physics/0008160 (2000).Google Scholar
  8. 8.
    Y. V. Lomachuk and A. V. Titov, Phys. Rev. A 88, 062511 (2013).CrossRefADSGoogle Scholar
  9. 9.
    A. V. Titov, Y. V. Lomachuk, and L. V. Skripnikov, Phys. Rev. A 90, 052522 (2014).CrossRefADSGoogle Scholar
  10. 10.
    A. V. Titov et al., Recent Adv. Theor. Chem. Phys. Syst. 15, 253 (2006).Google Scholar
  11. 11.
    L. V. Skripnikov et al., Phys. Rev. A 80, 060501 (2009).CrossRefADSGoogle Scholar
  12. 12.
    L. V. Skripnikov et al., Phys. Rev. A 84, 022505 (2011).CrossRefADSGoogle Scholar
  13. 13.
    L. V. Skripnikov et al., Phys. Rev. A 90, 064501 (2014).CrossRefADSGoogle Scholar
  14. 14.
    J. Lee et al., Phys. Rev. A 87, 022516 (2013).CrossRefADSGoogle Scholar
  15. 15.
    A. N. Petrov et al., Phys. Rev. A 88, 010501 (2013).CrossRefADSGoogle Scholar
  16. 16.
    L. V. Skripnikov and A. V. Titov, J. Chem. Phys. 145, 054115 (2016).CrossRefADSGoogle Scholar
  17. 17.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  18. 18.
    C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).CrossRefADSGoogle Scholar
  19. 19.
    H. J. A. Jensen, R. Bast, T. Saue, L. Visscher, V. Bakken, K. G. Dyall, S. Dubillard, U. Ekstrom, E. Eliav, T. Enevoldsen, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, et al., DIRAC, a Relativistic ab initio Electronic Structure Program, Release DIRAC12 (2012). http://www.diracprogram.org.Google Scholar
  20. 20.
    C. Wullen, Z. Phys. Chem. 224, 413 (2010).CrossRefGoogle Scholar
  21. 21.
    L. V. Skripnikov and A. V. Titov, Phys. Rev. A 91, 042504 (2015).CrossRefADSGoogle Scholar
  22. 22.
    L. V. Skripnikov, A. N. Petrov, and A. V. Titov, J. Chem. Phys. 139, 221103 (2013).CrossRefADSGoogle Scholar
  23. 23.
    R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).CrossRefADSGoogle Scholar
  24. 24.
    V. A. Shaburov, A. E. Sovestnov, E. M. Savitskij, I. A. Markova, O. D. Chistyakov, and T. M. Shkatova, Phys. Solid State 24, 263 (1982).Google Scholar
  25. 25.
    L. Joubert, G. Picard, and J. J. Legendre, Inorg. Chem. 37, 1984 (1998).CrossRefGoogle Scholar
  26. 26.
    M. Dolg, H. Stoll, and H. Preuss, J. Mol. Struct.: THEOCHEM 235, 67 (1991).CrossRefGoogle Scholar
  27. 27.
    T. R. Cundari et al., J. Chem. Phys. 103, 7058 (1995).CrossRefADSGoogle Scholar
  28. 28.
    S. G. Semenov, M. E. Bedrina, and A. V. Titov, Russ. J. Gen. Chem. 86, 1215 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Shakhova
    • 1
    • 2
  • S. G. Semenov
    • 1
  • Yu. V. Lomachuk
    • 1
  • Yu. A. Demidov
    • 1
  • L. V. Skripnikov
    • 1
    • 2
  • N. S. Mosyagin
    • 1
  • A. V. Zaitsevskii
    • 1
    • 3
  • A. V. Titov
    • 1
  1. 1.Petersburg Nuclear Physics InstituteNational Research Center Kurchatov InstituteGatchina, Leningrad oblastRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations