Advertisement

Optics and Spectroscopy

, Volume 124, Issue 4, pp 509–515 | Cite as

Generation Kinetics of Nonequilibrium Charge Carriers in Crystals with Deep Impurities Involving Two-Center Transitions between Band and Impurity States

  • A. A. Popov
  • E. Yu. Perlin
  • A. V. Ivanov
Condensed-Matter Spectroscopy
  • 10 Downloads

Abstract

A new and efficient mechanism of nonlinear photoexcitation of a transparent crystal with deep impurity centers is proposed. It is hypothesized that the energy of a quantum of light is smaller than the energy gap between the bottom of the conduction band and the impurity level, but is larger than the gap between the impurity level and the top of the valence band. The kinetics of nonlinear cascade generation of nonequilibrium charge carriers is considered taking into account two-center processes in which the energy transfer and the photon absorption occur in one and the same elementary event. The dependences of the quasi-equilibrium concentrations of nonequilibrium charge carriers in the bands and of the occupancy of impurity states on the laser-radiation intensity are obtained. It is shown that the generation process of nonequilibrium electron–hole pairs is of a threshold nature. Depending on the concentration of impurity centers, the threshold intensities can be ~105–107 W/cm2, while the setting time of the quasi-equilibrium occupancies of electronic states is ~10–0.1 ns.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Chivian, W. E. Case, and D. D. Eden, Appl. Phys. Lett. 35, 124 (1979). https://doi.org/10.1063/1.91044.CrossRefADSGoogle Scholar
  2. 2.
    A. W. Kueny, W. E. Case, and M. E. Koch, J. Opt. Soc. Am. B 6, 639 (1989). https://doi.org/10.1364/JOSAB.6.000639.CrossRefADSGoogle Scholar
  3. 3.
    W. E. Case, M. E. Koch, and A. W. Kueny, J. Lumin. 45, 351 (1990). https://doi.org/10.1016/0022- 2313(90)90191-D.CrossRefGoogle Scholar
  4. 4.
    H. Ni and S. C. Rand, Opt. Lett. 16, 1424 (1991). https://doi.org/10.1364/OL.16.001424.CrossRefADSGoogle Scholar
  5. 5.
    A. W. Kueny, W. E. Case, and M. E. Koch, J. Opt. Soc. Am. B 10, 1834 (1993). https://doi.org/10.1364/JOSAB.10.001834.CrossRefADSGoogle Scholar
  6. 6.
    Y. Chen and F. Auzel, J. Phys. D: Appl. Phys. 28, 207 (1995). https://doi.org/10.1088/0022-3727/28/1/029.CrossRefADSGoogle Scholar
  7. 7.
    F. Auzel and Y. Chen, J. Lumin. 65, 45 (1995). https://doi.org/10.1016/0022-2313(94)00071-J.CrossRefGoogle Scholar
  8. 8.
    F. Auzel and Y. H. Chen, J. Non-Cryst. Solids 184, 57 (1995). https://doi.org/10.1016/0022-3093(94)00595-8.CrossRefADSGoogle Scholar
  9. 9.
    Ph. Goldner and F. Pelle, Opt. Mater. 5, 239 (1996). https://doi.org/10.1016/0925-3467(96)00003-1.CrossRefADSGoogle Scholar
  10. 10.
    F. Auzel, Acta Phys. Polon. A 90, 7 (1996). https://doi.org/10.12693/APhysPolA.90.7. v vCrossRefGoogle Scholar
  11. 11.
    F. Pelle and P. Goldner, Acta Phys. Polon. A 90, 197 (1996). https://doi.org/10.12693/APhysPolA.90.197.CrossRefGoogle Scholar
  12. 12.
    S. Guy, M.-F. Joubert, and B. Jacquier, Phys. Rev. B 55, 8240 (1997). https://doi.org/10.1103/Phys- RevB.55.8240.CrossRefADSGoogle Scholar
  13. 13.
    M.-F. Joubert, Opt. Mater. 11, 181 (1999). https://doi.org/10.1016/S0925-3467(98)00043-3.CrossRefADSGoogle Scholar
  14. 14.
    D. B. Gatch, W. M. Dennis, and W. M. Yen, Phys. Rev. B 62, 10790 (2000). https://doi.org/10.1103/Phys- RevB.62.10790.CrossRefADSGoogle Scholar
  15. 15.
    M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, Phys. Rev. B 61, 1116 (2000). https://doi.org/10.1103/PhysRevB.61.1116.CrossRefADSGoogle Scholar
  16. 16.
    E. Yu. Perlin, A. M. Tkachuk, M.-F. Joubert, and R. Moncorge, Opt. Spectrosc. 90, 691 (2001). https://doi.org/10.1134/1.1374657.CrossRefADSGoogle Scholar
  17. 17.
    A. K. Singh, K. Kumar, A. C. Pandey, O. Parkash, S. B. Rai, and D. Kumar, Appl. Phys. B 104, 1035 (2011). https://doi.org/10.1007/s00340-011-4673-2.CrossRefADSGoogle Scholar
  18. 18.
    R. K. Verma, S. K. Singh, and S. B. Rai, Curr. Appl. Phys. 12, 1481 (2012). https://doi.org/10.1016/j.cap.2012.04.018.CrossRefADSGoogle Scholar
  19. 19.
    P. Babu, I. R. Martin, K. V. Krishnaiah, H. J. Seo, V. Venkatramu, C. K. Jayasankar, and V. Lavin, Chem. Phys. Lett. 600, 34 (2014). https://doi.org/10.1016/j.cplett.2014.03.048.CrossRefADSGoogle Scholar
  20. 20.
    M. Rathaiah, I. R. Martin, P. Babu, K. Lingannaa, C. K. Jayasankar, V. Lavin, and V. Venkatramu, Opt. Mater. 39, 16 (2015). https://doi.org/10.1016/j.optmat. 2014.10.050.CrossRefADSGoogle Scholar
  21. 21.
    E. Yu. Perlin, Opt. Spectrosc. 91, 729 (2001). https://doi.org/10.1134/1.1420854.CrossRefADSGoogle Scholar
  22. 22.
    E. Yu. Perlin, J. Luminesc. 94–95, 249 (2001). https://doi.org/10.1016/S0022-2313(01)00288-5.CrossRefGoogle Scholar
  23. 23.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, J. Exp. Theor. Phys. 96, 543 (2003). https://doi.org/10.1134/1.1567429.CrossRefADSGoogle Scholar
  24. 24.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, J. Exp. Theor. Phys. 101, 357 (2005). https://doi.org/10.1134/1.2047802.CrossRefADSGoogle Scholar
  25. 25.
    E. Yu. Perlin and R. S. Levitskii, J. Opt. Technol. 73, 1 (2006). https://doi.org/10.1364/JOT.73.000001.CrossRefADSGoogle Scholar
  26. 26.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, J. Opt. Technol. 73, 9 (2006). https://doi.org/10.1364/JOT.73.000009.CrossRefADSGoogle Scholar
  27. 27.
    R. S. Levitskii, A. V. Ivanov, and E. Yu. Perlin, J. Opt. Technol. 73, 71 (2006). https://doi.org/10.1364/JOT.73.000071.CrossRefADSGoogle Scholar
  28. 28.
    E. Yu. Perlin and R. S. Levitskii, Opt. Spectrosc. 102, 262 (2007). https://doi.org/10.1134/S0030400X07020154.CrossRefADSGoogle Scholar
  29. 29.
    A. V. Ivanov, R. S. Levitskii, and E. Yu. Perlin, Opt. Spectrosc. 107, 255 (2009). https://doi.org/10.1134/S0030400X09080153.CrossRefADSGoogle Scholar
  30. 30.
    E. Yu. Perlin, A. V. Ivanov, and A. A. Popov, Opt. Spectrosc. 113, 376 (2012). https://doi.org/10.1134/S0030400X12100074.CrossRefADSGoogle Scholar
  31. 31.
    E. Yu. Perlin, A. V. Ivanov, and A. A. Popov, Opt. Spectrosc. 113, 383 (2012). https://doi.org/10.1134/S0030400X12100086.CrossRefADSGoogle Scholar
  32. 32.
    E. Yu. Perlin, A. V. Ivanov, and A. A. Popov, Opt. Spectrosc. 115, 739 (2013). https://doi.org/10.1134/S0030400X13110179.CrossRefADSGoogle Scholar
  33. 33.
    E. Yu. Perlin, R. S. Levitskii, A. V. Ivanov, and K. A. Eliseev, Opt. Spectrosc. 118, 229 (2015). https://doi.org/10.1134/S0030400X15020150.CrossRefADSGoogle Scholar
  34. 34.
    E. Yu. Perlin, R. S. Levitskii, A. V. Ivanov, and K. A. Eliseev, Opt. Spectrosc. 119, 216 (2015). http://dx.doi.org/doi 10.1134/S0030400X15080184.CrossRefADSGoogle Scholar
  35. 35.
    G. Lucovsky, Solid State Commun. 3, 299 (1965). https://doi.org/10.1016/0038-1098(65)90039-6.CrossRefADSGoogle Scholar
  36. 36.
    V. L. Bonch-Bruevich, Vestn. Mosk. Univ., Ser. Fiz. Astron. 12, 586 (1971).Google Scholar
  37. 37.
    R. S. Levitski, E. Yu. Perlin, and A. A. Popov, J. Opt. Technol. 77, 77 (2010). https://doi.org/10.1364/JOT.77.000593.CrossRefGoogle Scholar
  38. 38.
    A. G. Milnes, Deep Impurities in Semiconductors (Wiley, Chichester, 1973).Google Scholar
  39. 39.
    M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, Singapore, 1996), Vol. 9.CrossRefGoogle Scholar
  40. 40.
    P. Hacke, A. Maekawa, N. Koide, K. Hiramatsu, and N. Sawaki, Jpn. J. Appl. Phys. 33 (Pt. 1, No. 12A), 6443 (1994). https://doi.org/10.1143/JJAP.33.6443.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Center for Information Optical TechnologiesITMO UniversitySt. PetersburgRussia

Personalised recommendations