Optics and Spectroscopy

, Volume 124, Issue 4, pp 594–608 | Cite as

Window Glasses: State and Prospects

  • V. A. MaiorovEmail author
Geometrical and Applied Optics


Analysis and generalization of the results of investigations devoted to the improvement of optical properties have been carried out, and descriptions of a structure and a reaction mechanism of available and promising window glasses with solar radiation are presented. All devices are divided into groups with static constant and dynamic regulated spectral characteristics. The group of static glasses includes heat-protective and spectrally selective glasses with low-emissivity coatings and infrared filters with dispersed plasmonic nanoparticles. Electrochromic glasses, nanostructured dynamic infrared filters, and glasses with separated regulation of the transmission of visible-light and near-infrared radiation are dynamic devices. It is noted that the use of mesoporous films made of plasmonic nanoparticles open up especially wide possibilities. Their application allows one to realize a dynamic separated regulation of the transmission of visible light and nearinfrared radiation in which, under the gradual increase in the electric potential on the glass, mechanisms of plasmon and polaron reduction of solar radiation gradually change the glass’ condition from light warm to light cold and then to dark cold consecutively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Maiorov, Svetoprozrachnye Konstr., No. 1, 21 (2016).Google Scholar
  2. 2.
    V. A. Maiorov, Svetoprozrachnye Konstr., No. 2, 8 (2016).Google Scholar
  3. 3.
    G. Bräuer, Surf. Coat. Technol. 112, 358 (1999). doi 10.1016/S0257-8972(98)00737-3CrossRefGoogle Scholar
  4. 4.
    H. J. Gläser, Appl. Opt. 47, C193 (2008). doi 10.1364/AO.47.00C193CrossRefGoogle Scholar
  5. 5.
    G. Kleideiter, Function and Production of Coating on Architectural Glass. Basics and Overview. Leybold Optics. Scholar
  6. 6.
    J. Mohelnikova, in Nanocoatings and Ultra-Thin Films. Technologies and Applications, Ed. by A. S. H. Makhlouf and I. Tiginyanu (Woodhead, Oxford, 2011), p. 182.Google Scholar
  7. 7.
    SunGuard Advanced Architectural Glass. Technical Information. What you Need to Know to Build with Light (Guardian Industries Corp., 2015). http://www.sun- Scholar
  8. 8.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).Google Scholar
  9. 9.
    I. Kriegel, F. Scotognella, and L. Manna, Phys. Rep. 674, 1 (2017). doi 10.1016/j.physrep.2017.01.003MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    A. Agrawal, R. W. Johns, and D. J. Milliron, Ann. Rev. Mat. Res. 47, 1 (2017). doi 10.1146/annurev-matsci-070616-124259CrossRefGoogle Scholar
  11. 11.
    A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007). doi 10.1016/S1748-0132(07)70017-8CrossRefGoogle Scholar
  12. 12.
    K. Adachi, M. Miratsu, and T. Asahi, J. Mater. Res. 25, 510 (2010). doi 10.1557/JMR.2010.0075CrossRefADSGoogle Scholar
  13. 13.
    K. Machida, A. Tofuku, and K. Adachi, in Handbook of Functional Nanomaterials, Vol. 1: Synthesis and Modifications, Ed. by M. Aliofkhazraei (Nova Science, New York, 2014), p. 199.Google Scholar
  14. 14.
    S. D. Lounis, E. L. Runnerstrom, A. Llordés, and D. J. Milliron, J. Phys. Chem. Lett. 5, 1564 (2014). doi 10.1021/jz500440eCrossRefGoogle Scholar
  15. 15.
    K. Adachi and T. Asahi, J. Mater. Res. 27, 965 (2012). doi 10.1557/jmr.2012.25CrossRefGoogle Scholar
  16. 16.
    L. Berggren, A. Azens, and G. A. Niklasson, J. Appl. Phys. 90, 1860 (2001). doi 10.1063/1.1384853CrossRefADSGoogle Scholar
  17. 17.
    G. A. Niklasson and C. G. Granqvist, J. Mater. Chem. 17, 127 (2007). doi 10.1039/B612174HCrossRefGoogle Scholar
  18. 18.
    Sumitomo Metal Co. Mining, Functional Inks: Near-Infrared Shielding Materials. Scholar
  19. 19.
    Fuji Technical Information. Near Infrared Red Light, IR Shield, Absorb Materials (Heat Shielding, Absorbing Materials) Tungsten based Complex Oxide (Fuji EL MWO3 Series). http://www.fuji-pigment. Scholar
  20. 20.
    T. Tani, S. Hakuta, N. Kiyoto, and M. Naya, Opt. Express 22, 9262 (2014). doi 10.1364/OE.22.009262CrossRefADSGoogle Scholar
  21. 21.
    M. Naya, Nano Silver Pavement - Metamaterial Film for Heat-Cut from Sun Light. Scholar
  22. 22.
    V. A. Maiorov, Svetoprozrachnye Konstr., No. 6, 15 (2017).Google Scholar
  23. 23.
    C. G. Granqvist, Thin Solid Films 564, 1 (2014). doi 10.1016/j.tsf.2014.02.002CrossRefADSGoogle Scholar
  24. 24.
    E. L. Runnerstrom, Chem. Commun. 50, 10555 (2014). doi 10.1039/C4CC03109ACrossRefGoogle Scholar
  25. 25.
    G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, Nano Lett. 11, 4415 (2011). doi 10.1021/nl202597nCrossRefADSGoogle Scholar
  26. 26.
    G. Garcia, R. Buonsanti, A. Lordes, E. L. Runnerstrom, A. Bergerud, and D. J. Milliron, Adv. Opt. Mater. 1, 215 (2013). doi 10.1002/adom.201200051CrossRefGoogle Scholar
  27. 27.
    T. E. Williams, C. M. Chang, E. L. Rosen, G. Garcia, E. L. Runnerstrom, B. L. Williams, B. Koo, R. Buonsanti, D. J. Milliron, and B. A. Helms, J. Mater. Chem. C 2, 3328 (2014). doi 10.1039/C3TC32247ECrossRefGoogle Scholar
  28. 28.
    P. Pattathil, R. Giannuzzi, and M. Manca, Nano Energy 30, 242 (2016). doi 10.1016/j.nanoen.2016.10.013CrossRefGoogle Scholar
  29. 29.
    A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, Nature (London, U.K.) 500 (7462), 323 (2013). doi 10.1038/nature12398CrossRefADSGoogle Scholar
  30. 30.
    J. Kim, G. K. Ong, Y. Wang, G. LeBlanc, T. E. Williams, T. M. Mattox, B. A. Helms, and D. J. Milliron, Nano Lett. 15, 5574 (2015). doi 10.1021/acs.nanolett. 5b02197CrossRefADSGoogle Scholar
  31. 31.
    S. Heo, J. Kim, G. K. Ong, and D. J. Milliron, Nano Lett. 17, 5756 (2017). doi 10.1021/acs.nanolett.7b02730CrossRefADSGoogle Scholar
  32. 32.
    P. Pattathil, R. Scarfiello, R. Giannuzzi, G. Veramonti, T. Sibillano, A. Qualtieri, C. Giannini, P. D. Cozzoli, and M. Manca, Nanoscale 8, 20056 (2016). doi 10.1039/C6NR07221FCrossRefGoogle Scholar
  33. 33.
    M. Barawi, L. de Trizio, R. Giannuzzi, G. Veramonti, L. Manna, and M. Manca, ACS Nano 11, 3576 (2017). doi 10.1021/acsnano.6b06664CrossRefGoogle Scholar
  34. 34.
    C. J. Barile, D. J. Slotcavage, and M. D. McGehee, Chem. Mater. 28, 1439 (2016). doi 10.1021/acs.chemmater.5b04811CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Novgorod State University Named after Yaroslav the WiseVelikii NovgorodRussia

Personalised recommendations