Advertisement

Optics and Spectroscopy

, Volume 124, Issue 4, pp 501–508 | Cite as

The Influence of Temperature on the Spectral Dependences of Aluminum’s Optical Properties

  • A. V. Kalenskii
  • A. A. Zvekov
  • B. P. Aduev
Condensed-Matter Spectroscopy

Abstract

Data in the literature on the optical properties of aluminum in the range of 198–1173 K are analyzed. Analytical expressions describing the dependences of aluminum permittivity on photon energy and temperature are proposed and tested. The spectral dependences of the aluminum absorption coefficient and specular reflectance at normal incidence, as well as of the absorption-efficiency coefficients of aluminum nanoparticles in a lithium-fluoride matrix, are calculated at different temperatures. The results obtained indicate the appearance of unusual nonlinear absorption effects in nanocomposites containing aluminum nanoparticles, which manifest themselves in a decrease in the absorption efficiency with increasing temperature at photon energies exceeding 1.40 eV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Marla, U. V. Bhandarkar, and S. S. Joshi, J. Phys. D 47, 105306 (2014). doi 10.1088/0022-3727/47/10/105306ADSCrossRefGoogle Scholar
  2. 2.
    N. L. Kazanskiy and S. D. Poletayev, Tech. Phys. 61, 1279 (2016). doi 10.1134/S1063784216090127CrossRefGoogle Scholar
  3. 3.
    A. V. Volkov, N. L. Kazanskiy, O. Yu. Moiseev, V. D. Paranin, S. D. Poletayev, and I. V. Chistyakov, Tech. Phys. 61, 579 (2016). doi 10.1134/S1063784216040241CrossRefGoogle Scholar
  4. 4.
    A. V. Kalenskii, A. A. Zvekov, and A. P. Nikitin, J. Appl. Spectrosc. 83, 972 (2017). doi 10.1007/s10812- 017-0400-zCrossRefGoogle Scholar
  5. 5.
    E. I. Alexandrov and V. P. Tsipilev, Combust. Explos. Shock Waves 20, 690 (1984). doi 0.1007/BF00757322CrossRefGoogle Scholar
  6. 6.
    A. V. Kalenskii, M. V. Anan’eva, A. A. Zvekov, and I. Yu. Zykov, Combust. Explos. Shock Waves 52, 234 (2016). doi doi 10.1134/S0010508216020143CrossRefGoogle Scholar
  7. 7.
    A. V. Kalenskii, M. V. Anan’eva, A. A. Zvekov, and I. Yu. Zykov, Tech. Phys. 60, 437 (2015). doi 10.1134/S1063784215030081CrossRefGoogle Scholar
  8. 8.
    A. G. Mathewson and H. P. Myers, J. Phys. F 2, 403 (1972). doi 10.1088/0305-4608/2/2/030ADSCrossRefGoogle Scholar
  9. 9.
    L. A. Akashev and V. I. Kononenko, High Temp. 39, 384 (2001). doi 10.1023/A:1017502424054CrossRefGoogle Scholar
  10. 10.
    S. G. Bezhanov, A. P. Kanavin, and S. A. Uryupin, Quantum Electron. 46, 119 (2016). doi 10.1070/QEL15877ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Arkhipov, A. G. Korotkikh, V. T. Kuznetsov, A. A. Razdobreev, and I. A. Evseenko, Russ. J. Phys. Chem. B 5, 616 (2011). doi 10.1134/S1990793111040026CrossRefGoogle Scholar
  12. 12.
    B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, A. A. Zvekov, and A. V. Kalenskii, Russ. J. Phys. Chem. B 7, 453 (2013). doi 10.1134/S199079311304012XCrossRefGoogle Scholar
  13. 13.
    V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and B. P. Aduev, Combust. Explos. Shock Waves 48, 705 (2012). doi 10.1134/S001050821206007XCrossRefGoogle Scholar
  14. 14.
    A. V. Kalenskii, A. A. Zvekov, M. V. Anan’eva, I. Yu. Zykov, V. G. Kriger, and B. P. Aduev, Combust. Explos. Shock Waves 50, 333 (2014). doi 10.1134/S0010508214030113CrossRefGoogle Scholar
  15. 15.
    N. W. Ashcroft and K. Sturm, Phys. Rev. B 3, 1898 (1971). doi 10.1103/PhysRevB.3.1898ADSCrossRefGoogle Scholar
  16. 16.
    D. Brust, Phys. Rev. B 2, 818 (1970). doi 10.1103/Phys-RevB.2.818ADSCrossRefGoogle Scholar
  17. 17.
    D. Barchiesi and Th. Grosges, J. Nanophoton. 8, 083097 (2014). doi 10.1117/1.JNP.8.083097ADSCrossRefGoogle Scholar
  18. 18.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985), Vol. 1, p. 405.Google Scholar
  19. 19.
    R. Brandt and G. Neuer, Int. J. Thermophys. 28, 1429 (2007). doi 10.1007/s10765-006-0144-0ADSCrossRefGoogle Scholar
  20. 20.
    H. H. Li, J. Phys. Chem. Ref. Data 5, 329 (1976). doi 10.1063/1.555536ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, M. V. Anan’eva, and B. P. Aduev, Opt. Spectrosc. 118, 978 (2015). doi 10.1134/S0030400X15060119ADSCrossRefGoogle Scholar
  22. 22.
    M. Ghanipour and D. Dorranian, Opt. Spectrosc. 118, 949 (2015). doi 10.1134/S0030400X15060132ADSCrossRefGoogle Scholar
  23. 23.
    T. Ghambari and D. Dorranian, Opt. Spectrosc. 119, 838 (2015). doi 10.1134/S0030400X15110089ADSCrossRefGoogle Scholar
  24. 24.
    I. L. Rasskazov, V. A. Markel, and S. V. Karpov, Opt. Spectrosc. 115, 666 (2013). doi 10.1134/S0030400X13110180ADSCrossRefGoogle Scholar
  25. 25.
    A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, Phys. Solid State 51, 55 (2009). doi 10.1134/S1063783409010065ADSCrossRefGoogle Scholar
  26. 26.
    V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and A. P. Nikitin, Thermophys. Aeromech. 20, 367 (2013). doi 0.1134/S0869864313030153ADSCrossRefGoogle Scholar
  27. 27.
    B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, A. P. Nikitin, and A. V. Kalenskii, Combust. Explos. Shock Waves 52, 713 (2016). doi 10.1134/S0010508216060113CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Kalenskii
    • 1
  • A. A. Zvekov
    • 1
    • 2
  • B. P. Aduev
    • 2
  1. 1.Kemerovo State UniversityKemerovoRussia
  2. 2.Federal Research Center of Coal and Coal Chemistry, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations