Optics and Spectroscopy

, Volume 124, Issue 3, pp 319–322 | Cite as

Enhancement of Fluorescence and Raman Scattering in Cyanine-Dye Molecules on the Surface of Silicon-Coated Silver Nanoparticles

  • A. N. Kamalieva
  • N. A. Toropov
  • K. V. Bogdanov
  • T. A. Vartanyan
Condensed-Matter Spectroscopy


A method of formation of a composite structure based on silver nanoparticles and a thin protective silicon film (AgNPs/Si) is developed. Enhancement of the fluorescence and Raman scattering in cyaninedye molecules deposited onto the formed nanostructure is observed. The optical properties and morphology stability of particles that are in contact with cyanine-dye solutions in organic solvents are studied. It is shown that the AgNPs/Si composite structure can be multiply used as an SERS-active surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ritchie and E. Burstein, Phys. Rev. B 24, 4843 (1981). doi 10.1103/PhysRevB.24.4843ADSCrossRefGoogle Scholar
  2. 2.
    K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, J. Phys. Chem. 107, 668 (2003). doi 10.1021/jp026731yCrossRefGoogle Scholar
  3. 3.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010; Pan Stanford, Singapore, 2011).Google Scholar
  4. 4.
    N. A. Toropov, E. N. Kaliteevskaya, N. B. Leonov, and T. A. Vartanyan, Opt. Spectrosc. 113, 616 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    A. N. Kamalieva, N. A. Toropov, and T. A. Vartanyan, Int. J. Nanotechnol. 13, 642 (2016). doi 10.1504/IJNT.2016.079667CrossRefGoogle Scholar
  6. 6.
    R. P. van Duyne, D. L. Jeanmaire, and D. F. Shriver, Anal. Chem. 46, 213 (1974). doi 10.1021/ac60338a012CrossRefGoogle Scholar
  7. 7.
    D. L. Jeanmaire and R. P. van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84 (10), 1 (1977). doi 10.1016/S0022-0728(77)80224-6CrossRefGoogle Scholar
  8. 8.
    M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974). doi 10.1016/0009- 2614(74)85388-1ADSCrossRefGoogle Scholar
  9. 9.
    I. R. Nabiev, R. G. Efremov, and G. D. Chumanov, Sov. Phys. Usp. 31, 241 (1988). doi 10.3367/UFNr.0154.198803d.0459ADSCrossRefGoogle Scholar
  10. 10.
    C. R. Yonzon, D. A. Stuart, X. Y. Zhang, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, Talanta 67, 438 (2005). doi 10.1016/j.talanta.2005.06.039CrossRefGoogle Scholar
  11. 11.
    B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. van Duyne, Mater. Today 15, 16 (2012). doi 10.1016/S1369-7021(12)70017-2CrossRefGoogle Scholar
  12. 12.
    K. Gudun, Z. Elemessova, L. Khamkhash, E. Ralchenko, and R. Bukasov, J. Nanomater. 2017, 9182025 (2017). doi 10.1155/2017/9182025CrossRefGoogle Scholar
  13. 13.
    A. Povolotskiy, A. Povolotckaia, Y. Petrov, A. Manshina, and S. Tunik, Appl. Phys. Lett. 103, 113102 (2013). doi 10.1063/1.4820841ADSCrossRefGoogle Scholar
  14. 14.
    T. I. Borodinova, V. G. Kravets, and V. R. Romanyuk, Zh. Nano-Elektron. Fiz. 4, 2039 (2012).Google Scholar
  15. 15.
    T. A. Vartanyan, N. B. Leonov, S. G. Przhibel’skii, and V. V. Khromov, Opt. Spectrosc. 106, 697 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    N. B. Leonov, S. G. Przhibel’skii, and T. A. Vartanyan, Opt. Quantum Electron. 49, 127 (2017). doi 10.1007/s11082-017-0969-8CrossRefGoogle Scholar
  17. 17.
    F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, Nano Lett. 7, 496 (2007). doi 10.1021/nl062901xADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Kamalieva
    • 1
  • N. A. Toropov
    • 1
  • K. V. Bogdanov
    • 1
  • T. A. Vartanyan
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations