Optics and Spectroscopy

, Volume 124, Issue 3, pp 408–411 | Cite as

The Transfer of a Holographic Structure from Dihromated Gelatin Layers on a Polymethylmethacrylate Substrate

  • N. M. Ganzherli
  • S. N. Gulyaev
  • I. A. Maurer
  • D. R. Khazvalieva


The possibility of the transfer of a holographic structure that was originally registered on layers of dichromated gelatin (DCG) onto a substrate material of polymethylmethacrylate (PMMA) has been shown. The use of a selective destructive effect of short-wave UV radiation with a wavelength that is less than 270 nm is the basis of the mechanism of formation of secondary relief-phase holographic structure on the surface of PMMA. The optimization of processing modes and selection of developing compositions which are based on isopropanol and methylisobutylketone (MIBK) have been carried out, which made it possible to create reliefphase holographic gratings with high diffraction efficiency (DE) of about 25% and the maximum depth of the surface relief of the order of 1 μm on the substrates of PMMA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Gulyaev and V. P. Ratushnyi, J. Opt. Technol. 70, 105 (2003). doi 10.1364/JOT.70.000105ADSCrossRefGoogle Scholar
  2. 2.
    N. M. Ganzherli, S. N. Gulyaev, and I. A. Maurer, Tech. Phys. Lett. 42, 988 (2016). doi 10.1134/S1063785016100060ADSCrossRefGoogle Scholar
  3. 3.
    N. M. Ganzherli, S. N. Gulyaev, and I. A. Maurer, J. Opt. Technol. 84, 617 (2017).CrossRefGoogle Scholar
  4. 4.
    M. A. McCord and M. J. Rooks, Handbook of Microlithography, Micromachining and Microfabrication, Ed. by P. Rai-Choudhury, Vol. 1: Microlithography (SPIE Optical Engineering, Bellingham, Washington, 1997), p. 139. doi 10.1117/3.2265070Google Scholar
  5. 5.
    W. M. Moreau, Semiconductor Lithography Principles: Practices and Materials (Plenum, New York, 1988).CrossRefGoogle Scholar
  6. 6.
    M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, J. Micromech. Microeng. 18, 115029 (2008). doi 10.1088/0960-1317/18/11/115029ADSCrossRefGoogle Scholar
  7. 7.
    R. W. Johnstone, I. G. Foulds, and M. Parameswaran, J. Vacuum Sci. Technol. B 26, 682 (2008). doi 10.1116/1.2890688ADSCrossRefGoogle Scholar
  8. 8.
    S. N. Gulyaev, Phase Hologramms on Halogen-Silver Photomaterials. Scholar
  9. 9.
    T. A. Shankoff, Appl. Opt. 7, 2101 (1968). doi 10.1364/AO.7.002101ADSCrossRefGoogle Scholar
  10. 10.
    M. J. Rooks, E. Kratschmer, R. Viswanathan, J. Katine, R. E. Fontana, Jr., and S. A. MacDonald, J. Vacuum Sci. Technol. B 20, 2937 (2002). doi 10.1116/1.1524971CrossRefGoogle Scholar
  11. 11.
    C. F. Hoole, M. E. Welland, and A. N. Broers, Semicond. Sci. Technol. 12, 1166 (1997). doi 10.1088/0268-1242/12/9/017ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Ganzherli
    • 1
  • S. N. Gulyaev
    • 2
  • I. A. Maurer
    • 1
  • D. R. Khazvalieva
    • 2
  1. 1.Ioffe Physical Technical InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations