Advertisement

Optics and Spectroscopy

, Volume 124, Issue 3, pp 373–407 | Cite as

The Current Status of the Development of Light-Sensitive Media for Holography (a Review)

  • V. A. Barachevsky
Holography

Abstract

The results of studies that have been performed over the last decade in the field of development of silver halide and nonsilver holographic recording media of organic and inorganic origin are analyzed. It is shown that previously developed materials mainly allow the development of holographic investigations. Among irreversible materials, considerable progress has been made in improving the characteristics of photopolymerizable recording media, which has allowed their use in color image holography and 3D optical archive-type memory, as well as for fabricating holographic optical elements. In the field of improving the properties of reversible holographic recording media, practically significant results have been obtained for the creation of photoanisotropic materials based on azo dyes experiencing cis–trans photoisomerization, which allow the recording of polarization holograms. The needs of dynamic holography have been satisfied by lightsensitive doped inorganic crystals and polymer layers that have been created with nonlinear optical properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Barachevsky, Proc. SPIE 4149, 205 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Barachevskii, in Proceedings of the All-Russia Seminar on Yuri Nikolaevich Denisyuk is the Founder of National Holography (FTI im. A. F. Ioffe RAN, SPBGU ITMO, GOI im. S. I. Vavilova, St. Petersburg, 2007), p. 226.Google Scholar
  3. 3.
    A. Fimia, P. Acebal, S. Blaya, L. Carretero, A. Murciano, and R. F. Madrigal, Proc. SPIE 7358, 735802-1 (2009).CrossRefGoogle Scholar
  4. 4.
    Company SLAVICH. http://www.slavich.ru. Accessed September 10, 2015.Google Scholar
  5. 5.
    N. D. Vorzobova, Y. V. Sokolova, N. M. Kalinina, R. V. Ryabova, and A. N. Ponomarev, Mol. Cryst. Liq. Cryst. 535, 167 (2011).CrossRefGoogle Scholar
  6. 6.
    R. V. Ryabova, A. N. Ponomarev, and N. D. Vorzobova, Opt. Spectrosc. 117, 137 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, Tech. Phys. 59, 1849 (2014).CrossRefGoogle Scholar
  8. 8.
    S. L. Smith, K. Harvey, M. Richardson, and J. Blyth, Proc. SPIE 7957, 79570J-1 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    C. G. Stojanoff, Proc. SPIE 7957, 79570L-1 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    R. Dai, S. Chen, Z. Ren, Z. Wang, and D. Liu, Appl. Phys. B 109, 15 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. G. Ramırez, J. A. Quintana, J. M. Villalvilla, P. G. Boj, A. Retolaza, S. Merino, and M. A. Dıaz-Garcıa, J. Appl. Phys. 114, 033107-1 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    R. E. Orozco-Muñoz, M. Ortiz-Gutiérrez, M. A. Salgado-Verduzco, J. C. Ibarra-Torres, A. Olivares-Pérez, S. Toxqui-López, and M. Pérez-Cortés, Proc. SPIE 9006, 90061K-1 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    M. R. Gleeson, J. Guo, and J. T. Sheridan, New Polymers for Special Applications, Ed. by A. D. S. Gomes (InTech, Rijeka, 2012), p. 165.Google Scholar
  14. 14.
    J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Int. 2012, 803439-1 (2012).CrossRefGoogle Scholar
  15. 15.
    S. Gallego, A. Márquez, M. Ortuño, C. Neipp, I. Pascual, and A. Beléndez, Phys. Res. Int. 2012, 352681 (2012).CrossRefGoogle Scholar
  16. 16.
    J. T. Sheridan, M. Gleeson, and C. Close, J. Opt. Soc. Am. B 29, 460 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    S. Gallego, C. Neipp, L. A. Estepa, M. Ortuño, A. Márquez, J. Francés, I. Pascual, and A. Beléndez, Materials 5, 1373 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    W. Song, S. Tao, D. Wang, Y. Wang, and L. Marx, Adv. Mater. Res. 652–654, 638 (2013).Google Scholar
  19. 19.
    W. Song, S. Tao, Q. Zhai, and D. Wang, Opt. Eng. 52, 045801-1 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    D. E. Lucchetta, L. Nucara, L. Criante, F. Simoni, A. Boni, J.-H. Xu, R. Bizzarri, and R. Castagna, J. Appl. Phys. 114, 193101 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, Phys. Res. Int. 2012, 975948 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Qi, H. Li, J. P. Fouassier, J. Lalevée, and J. T. Sheridan, Appl. Opt. 53, 1052 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    A. Ibrahim, C. Ley, X. Allonas, O. I. Tarzi, A. C. Yong, C. Carré, and R. Chevallier, Photochem. Photobiol. Sci. 11, 1682 (2012).CrossRefGoogle Scholar
  24. 24.
    A. Ibrahim, X. Allonas, C. Ley, B. El Fouhaili, and C. Carré, J. Photopol. Sci. Technol. 27, 517 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Ibrahim, C. Ley, X. Allonas, C. Carré, and I. Pillin, J. Display Technol. 10, 456 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    K. P. Nimmi, V. Pramitha, K. Sreekumar, C. S. Kartha, and R. Joseph, J. Appl. Polym. Sci. 125, 1238 (2012).CrossRefGoogle Scholar
  27. 27.
    T. Sabel, S. Orlic, K. Pfeiffer, U. Ostrzinski, and G. Grützner, Opt. Mater. Express 3, 329 (2013).CrossRefGoogle Scholar
  28. 28.
    C.-Y. Kuo, T.-C. Hsu, and W.-H. Su, J. Non-Cryst. Solids 358, 735 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    Y.-C. Jeong, Y. Heo, J. Lee, S. Lee, D. Ahn, and J.-K. Park, Opt. Mater. 35, 547 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    S. Blaya, P. Acebal, L. Carretero, R. F. Madrigal, A. Murciano, and A. Fimia, Proc. SPIE 8074, 80740V-1 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    A. Srivastava, S. M. Sawant, L. Mainali, R. Bhatt, A. K. Gupta, and A. B. Samui, Polym. Adv. Technol. 23, 967 (2012).CrossRefGoogle Scholar
  32. 32.
    H. Lin, P. W. de Oliveira, and M. Veith, Opt. Mater. 33, 759 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    T. Mikulchyk, S. Martin, and I. Naydenova, J. Opt. 15, 105301 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    D. Cody, I. Naydenova, and E. Mihaylova, J. Opt. 14, 015601 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    D. Cody, A. Casey, I. Naydenova, and E. Mihaylova, Int. J. Polym. Sci. 2013, 564319 (2013).CrossRefGoogle Scholar
  36. 36.
    D. Cody, I. Naydenova, and E. Mihaylova, Proc. SPIE 8429, 84291B-1 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    D. Cody, I. Naydenova, L. O’Neill, and E. Mihaylova, Opt. Mater. 48, 12 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    D. Cody, I. Naydenova, and E. Mihaylova, Appl. Opt. 52, 489 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    D. Cody, S. Gribbin, I. Naydenova, and E. Mihaylova, ACS Appl. Mater. Interfaces 8, 18481 (2016).CrossRefGoogle Scholar
  40. 40.
    M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, Materials 5, 772 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    S. Toxqui-López, A. Olivares-Pérez, B. Pinto-Iguanero, A. Aguilar-Mora, and I. Fuentes-Tapia, Proc. SPIE 8281, 828102 (2012).Google Scholar
  42. 42.
    S. Toxqui-López, A. Olivares-Pérez, and I. Fuentes-Tapia, Proc. SPIE 8644, 864416 (2013).CrossRefGoogle Scholar
  43. 43.
    I. S. Steinberg, E. V. Vasilyev, and A. Y. Belikov, J. Opt. 15, 105403 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    C. S. Rajesh, R. Anjana, S. S. Sreeroop, and C. S. Kartha, Pramana 82, 259 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, Mater. Lett. 138, 284 (2015).CrossRefGoogle Scholar
  46. 46.
    E. Fernandez, R. Fuentes, A. Márquez, A. Beléndez, and I. Pascual, Int. J. Polym. Sci. 2014, 356534 (2014).CrossRefGoogle Scholar
  47. 47.
    M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, Opt. Express 19, 26325 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, A. Weiser, and M.-S. Volkov, Proc. SPIE 7233, 72330K-1 (2009).CrossRefGoogle Scholar
  49. 49.
    M. R. Gleeson, J. Guo, and J. T. Sheridan, New Polymers and Special Applications (InTech, Rijeka, 2012), p. 165.Google Scholar
  50. 50.
    J. Guo, M. R. Gleeson, and J. T. Sheridan, Proc. SPIE 8776, 87760J (2013).ADSCrossRefGoogle Scholar
  51. 51.
    F. Askham, US Patent No. 8323854 (2012).Google Scholar
  52. 52.
    K. Anderson, M. Ayres, B. Sissom, and F. Askham, Proc. SPIE 9006, 90060C (2014).ADSGoogle Scholar
  53. 53.
    M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, Proc. SPIE 9587, 958702 (2015).CrossRefGoogle Scholar
  54. 54.
    M. R. Ayres, K. Anderson, F. Askham, and B. Sissom, Proc. SPIE 9201, 92010V (2014).ADSCrossRefGoogle Scholar
  55. 55.
    M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, Proc. SPIE 9386, 93860G (2015).Google Scholar
  56. 56.
    F. Askham, M. R. Ayres, and A. C. Urness, Proc. SPIE 9587, 958708 (2015).CrossRefGoogle Scholar
  57. 57.
    F.-K. Bruder, R. Hagen, T. Rolle, M.-S. Weiser, and T. Facke, Angew. Chem., Int. Ed. Engl. 50, 4552 (2011).CrossRefGoogle Scholar
  58. 58.
    M. M. Nazarov, K. V. Khaydukov, V. I. Sokolov, and E. V. Khaydukov, Quant. Electron. 46, 29 (2016).ADSCrossRefGoogle Scholar
  59. 59.
    Y. Tomita, E. Hata, K. Momose, S. Takayama, X. Liu, K. Chikama, J. Klepp, C. Pruner, and M. Fally, J. Mod. Opt. 63, S11 (2016).ADSCrossRefGoogle Scholar
  60. 60.
    I. Yu. Denisyuk, Ju. A. Burunkova, S. Kokenyesi, V. G. Bulgakova, and M. I. Fokina, Nanocrystals: Synthesis, Characterization and Applications, Ed. by S. Neralla (InTech, Rijeka, 2012), p. 81.Google Scholar
  61. 61.
    T. N. Smirnova, L. M. Kokhtich, O. V. Sakhno, and J. Stumpe, Opt. Spectrosc. 110, 129 (2011).ADSCrossRefGoogle Scholar
  62. 62.
    T. N. Smirnova, L. M. Kokhtich, O. V. Sakhno, and J. Stumpe, Opt. Spectrosc. 110, 137 (2011).ADSCrossRefGoogle Scholar
  63. 63.
    S. Han, M. Lee, and B. K. Kim, Opt. Mater. 34, 131 (2011).ADSCrossRefGoogle Scholar
  64. 64.
    M. Kawana, J.-i. Takahashi, S. Yasui, and Y. Tomita, J. Appl. Phys. 117, 053105 (2015).ADSCrossRefGoogle Scholar
  65. 65.
    K. Mitsube, Y. Nishimura, S. Takayama, K. Nagaya, and Y. Tomita, Proc. SPIE 8776, 87760I (2013).Google Scholar
  66. 66.
    M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, Appl. Opt. 52, 8519 (2013).ADSCrossRefGoogle Scholar
  67. 67.
    M. Huang and R. Li, Proc. SPIE 8782, 878204 (2013).CrossRefGoogle Scholar
  68. 68.
    X. Sun and J. Wang, Proc. SPIE 8782, 878202 (2013).CrossRefGoogle Scholar
  69. 69.
    A. V. Velasco, M. L. Calvo, and P. Cheben, J. Appl. Phys. 113, 033101 (2013).ADSCrossRefGoogle Scholar
  70. 70.
    M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, Macromolecules 48, 2958 (2015).ADSCrossRefGoogle Scholar
  71. 71.
    M. Kveton, A. Havranek, P. Fiala, M. Skeren, and I. Simov, Proc. SPIE 8697, 869709 (2012).CrossRefGoogle Scholar
  72. 72.
    V. Pramitha, K. P. Nimmi, N. V. Subramanyan, R. Joseph, K. Sreekumar, and C. S. Kartha, Appl. Opt. 48, 2255 (2009).ADSCrossRefGoogle Scholar
  73. 73.
    V. Pramitha, B. Das, J. Joseph, R. Joseph, K. Sreekumar, and C. S. Kartha, Opt. Mater. 52, 212 (2016).ADSCrossRefGoogle Scholar
  74. 74.
    X.-Y. Xue, F.-S. Hai, L.-Z. Gao, F. He, C.-L. Li, and Y.-X. Li, Proc. SPIE 8782, 87820D (2013).Google Scholar
  75. 75.
    Y. Tomita, E. Hata, S. Yasui, and K. Mitsube, Proc. SPIE 8074, 80740F (2011).ADSCrossRefGoogle Scholar
  76. 76.
    E. Hata, K. Mitsube, K. Momose, and Y. Tomita, Opt. Mater. Express 1, 207 (2011).CrossRefGoogle Scholar
  77. 77.
    A. Barichard, T. Galstian, and Y. Israeli, Phys. Chem. Chem. Phys. 14, 8208 (2012).CrossRefGoogle Scholar
  78. 78.
    Y.-C. Jeong, B. Jung, and J.-K. Park, Macromol. Res. 20, 623 (2012).CrossRefGoogle Scholar
  79. 79.
    Y.-C. Jeong, B. Jung, and J.-K. Park, ACS Appl. Mater. Interfaces 4, 4921 (2012).CrossRefGoogle Scholar
  80. 80.
    J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, Phys. Rev. A 84, 013621 (2011).ADSCrossRefGoogle Scholar
  81. 81.
    D. I. Zhuk, J. A. Burunkova, I. Yu. Denisyuk, G. P. Miroshnichenko, I. Csarnovics, D. Toth, A. Bonyar, M. Veres, and S. Kokenyesi, Polymer 112, 136 (2017).CrossRefGoogle Scholar
  82. 82.
    Y. Tomita, K. Momose, E. Hata, and S. Takayama, Proc. SPIE 8429, 842918 (2012).CrossRefGoogle Scholar
  83. 83.
    N. D. Vorzobova, V. G. Bulgakova, and V. O. Veselov, Opt. Spectrosc. 119, 1034 (2015).ADSCrossRefGoogle Scholar
  84. 84.
    Y. Tomita, E. Hata, K. Momose, S. Takayama, X. Liu, K. Chikama, J. Klepp, C. Pruner, and M. Fally, J. Mod. Opt. 63, S11 (2016).ADSCrossRefGoogle Scholar
  85. 85.
    A. V. Veniaminov and V. V. Mogil’nyi, Opt. Spectrosc. 115, 906 (2013).ADSCrossRefGoogle Scholar
  86. 86.
    H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, Opt. Laser Technol. 44, 882 (2012).ADSCrossRefGoogle Scholar
  87. 87.
    M.-L. Hsieh, W.-C. Chen, H.-Y. Chen, and S.-Y. Lin, Opt. Commun. 308, 121 (2013).ADSCrossRefGoogle Scholar
  88. 88.
    Y.-F. Chen, J.-H. Lin, S. H. Lin, K. Y. Hsu, and W.-T. Whang, Opt. Lett. 38, 2056 (2013).ADSCrossRefGoogle Scholar
  89. 89.
    H. Liu, D. Yu, L. Yang, W. Wang, L. Zhang, H. Wang, and X. Sun, Opt. Commun. 285, 4993 (2012).ADSCrossRefGoogle Scholar
  90. 90.
    C.-J. Ko, P.-L. Chen, Y.-N. Hsiao, S.-H. Lin, W.-T. Whang, K. Y. Hsu, K.-J. Huang, C.-C. Chen, I.-H. Tseng, and M.-H. Tsai, Polym. Eng. Sci., 1297 (2013).Google Scholar
  91. 91.
    C.-J. Ko, Y.-N. Hsiao, S.-H. Lin, W.-T. Whang, K. Y. Hsu, Y.-S. Hsiao, and C.-C. Chen, J. Appl. Polym. Sci. 37835, 643 (2013).CrossRefGoogle Scholar
  92. 92.
    S. H. Lin, S.-L. Cho, S.-F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, Opt. Express 22, 14944 (2014).ADSCrossRefGoogle Scholar
  93. 93.
    Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, Opt. Rev. 22, 837 (2015).CrossRefGoogle Scholar
  94. 94.
    D. N. Marmysh and U. V. Mahilny, Tech. Phys. 58, 1666 (2013).CrossRefGoogle Scholar
  95. 95.
    V. Matusevich, E. Tolstik, R. Kowarschik, E. Egorova, Y. I. Matusevich, and L. Krul, Opt. Commun. 295, 79 (2013).ADSCrossRefGoogle Scholar
  96. 96.
    E. Tolstik, E. Egorova, D. Hoff, V. Matusevich, L. B. Yakimtsova, Y. I. Matusevich, R. Kowarschik, and L. P. Krul, J. Polym. Res. 19, 9742 (2012).CrossRefGoogle Scholar
  97. 97.
    Yu._I. Matusevich and L. P. Krul, Russ. J. Appl. Chem. 86, 1262 (2013).CrossRefGoogle Scholar
  98. 98.
    A. Yu. Zhizhchenko, O. B. Vitrik, and Yu. N. Kulchin, Opt. Mater. 46, 265 (2016).ADSCrossRefGoogle Scholar
  99. 99.
    F. A. Al-Saymari, H. A. Badran, A. Y. Al-Ahmad, and C. A. Emshary, Indian J. Phys. 87, 1153 (2013).ADSCrossRefGoogle Scholar
  100. 100.
    R. Vallejo-Mendoza, A. Olivares-Pérez, N. Korneev, V. Dorantes-García, and M. J. Ordóñez-Padilla, Proc. SPIE 8281, 828114 (2012).Google Scholar
  101. 101.
    S. Toxqui-Lopez, E. Hernández-Hernández, C. Santacruz-Vázquez, and A. Olivares-Pérez, Proc. SPIE 9006, 90061A (2014).CrossRefADSGoogle Scholar
  102. 102.
    A. Olivares-Pérez, S. Toxqui-López, and A. L. Padilla-Velasco, Materials 5, 2383 (2012).ADSCrossRefGoogle Scholar
  103. 103.
    A. Olivares-Pérez, S. Toxqui-López, I. Fuentes-Tapia, M. Ortiz-Gutiérrez, and G. Mellano-Villasenor, Proc. SPIE 8281, 828103 (2012).Google Scholar
  104. 104.
    M. Zhu, H. Zhong, J. Jia, W. Fu, J. Liu, B. Zou, and Y. Wang, Adv. Opt. Mater. 2, 338 (2014).CrossRefGoogle Scholar
  105. 105.
    A. Andries, V. Abaskin, E. Achimova, A. Meshalkin, A. Prisacar, S. Sergheev, S. Robu, and L. Vlad, Phys. Status Solidi A 208, 1837 (2011).ADSCrossRefGoogle Scholar
  106. 106.
    A. Ozols, P. Augustovs, and D. Saharov, Lithuan. J. Phys. 52, 10 (2012).CrossRefGoogle Scholar
  107. 107.
    J. Teteris, M. Reinfelde, J. Aleksejeva, and U. Gertners, Phys. Proc. 44, 151 (2013).ADSCrossRefGoogle Scholar
  108. 108.
    S. G. Krivoshlykov, Appl. Opt. 54, 3569 (2015).ADSCrossRefGoogle Scholar
  109. 109.
    A. Stronski, E. Achimova, O. Paiuk, A. Meshalkin, V. Abashkin, O. Lytvyn, S. Sergeev, A. Prisacar, and G. Triduh, Nanoscale Res. Lett. 11, 1 (2016).ADSCrossRefGoogle Scholar
  110. 110.
    A. Stronski, E. Achimova, O. Paiuk, A. Meshalkin, A. Prisacar, G. Triduh, P. Oleksenko, and P. Lytvyn, Nanoscale Res. Lett. 12, 286 (2017).ADSCrossRefGoogle Scholar
  111. 111.
    A. Mikaeliane, A. Axenchikov, V. Bobrinev, E. Gulaniane, and V. Shatun, IEEE J. Quantum Electron. 4, 757 (1968).ADSCrossRefGoogle Scholar
  112. 112.
    V. A. Barachevskii, G. I. Lashkov, and V. A. Tsekhomskii, Photochromism and its Application (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  113. 113.
    S. Fu, S. Sun, W. Sang, B. Sun, X. Zhang, and Y. Liu, Proc. SPIE 8559, 85590G (2012).ADSCrossRefGoogle Scholar
  114. 114.
    S. Fua, X. Wang, W. Hu, M. Xie, X. Zhang, and Y. Liu, Optik 124, 139 (2013).ADSCrossRefGoogle Scholar
  115. 115.
    S. Janfaza, A. M. Rad, M. Khayati, A. Etemadzadeh, and Z. Jamshidinia, Turk. J. Biochem. 38, 468 (2013).CrossRefGoogle Scholar
  116. 116.
    N. Ishii, T. Kato, and J. Abe, Sci. Rep. 2, 819 (2012).ADSCrossRefGoogle Scholar
  117. 117.
    S. He, G. Liu, and S. Cui, Adv. Mater. Res. 763, 61 (2013).CrossRefGoogle Scholar
  118. 118.
    S. He, G. Liu, and S. Cui, Appl. Mech. Mater. 164, 166 (2012).ADSCrossRefGoogle Scholar
  119. 119.
    F. Sun, S. Pu, and S. Cui, Appl. Mech. Mater. 327, 73 (2013).CrossRefGoogle Scholar
  120. 120.
    L. Wang, S. Pu, L. Yan, and S. Cui, Adv. Mater. Res. 295–297, 1042 (2011).Google Scholar
  121. 121.
    L. Wang, S. Pu, and L. Yan, Appl. Mech. Mater. 164, 235 (2012).ADSCrossRefGoogle Scholar
  122. 122.
    R. Wang, P. Ren, S. Cui, and S. Pu, Adv. Mater. Res. 763, 88 (2013).CrossRefGoogle Scholar
  123. 123.
    P. Yan, Z. Tong, S. Pu, and W. Liu, Adv. Mater. Res. 156–157, 655 (2011).Google Scholar
  124. 124.
    M. Kajimura and C. Egami, Mol. Cryst. Liq. Cryst. 635, 102 (2016).CrossRefGoogle Scholar
  125. 125.
    L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, J. Polym. Sci. B 54, 2050 (2016).CrossRefGoogle Scholar
  126. 126.
    Z. Zong, N. Menke, B. Yao, Y. Wang, and Y. Chen, Appl. Mech. Mater. 130–134, 2035 (2012).Google Scholar
  127. 127.
    F. Gallego-Gómez, F. del Monte, and K. Meerholz, Adv. Funct. Mater. 23, 3770 (2013).CrossRefGoogle Scholar
  128. 128.
    C. Berges, L. Orio, M. Piñol, C. Sanchez-Somolinos, and R. Alcalá, Opt. Mater. 35, 1095 (2013).ADSCrossRefGoogle Scholar
  129. 129.
    C. Berges, I. Javakhishvili, S. Hvilsted, C. Sanchez-Somolinos, and R. Alcalá, Appl. Phys. Lett. 102, 193303 (2013).ADSCrossRefGoogle Scholar
  130. 130.
    C. Berges, I. Díez, I. Javakhishvili, S. Hvilsted, C. Sanchez-Somolinos, and R. Alcalá, Opt. Mater. 36, 845 (2014).ADSCrossRefGoogle Scholar
  131. 131.
    I. Chaganava, G. Kakauridze, and B. Kilosanidze, Proc. SPIE 7957, 795714 (2011).CrossRefGoogle Scholar
  132. 132.
    F. Zhao, J. Wu, Z. Pan, C. Wang, J. Zhang, Y. Zeng, and X. Lu, Opt. Commun. 285, 4180 (2012).ADSCrossRefGoogle Scholar
  133. 133.
    I. I. Davidenko, Opt. Mater. 34, 679 (2012).ADSCrossRefGoogle Scholar
  134. 134.
    H. Ono, M. Izawa, T. Sasaki, K. Noda, E. Nishioka, and N. Kawatsuk, Jpn. J. Appl. Phys. 52, 011602 (2013).ADSCrossRefGoogle Scholar
  135. 135.
    C. Probst, C. Meichner, H. Audorff, R. Walker, K. Kreger, L. Kador, and H.-W. Schmidt, J. Polym. Sci., B: Polym. Phys. 54, 2110 (2016).ADSCrossRefGoogle Scholar
  136. 136.
    H. Audorff, R. Walker, L. Kador, and H.-W. Schmidt, Chem.-Eur. J. 17, 12722 (2011).CrossRefGoogle Scholar
  137. 137.
    A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, J. Phys. Chem. B 120, 11317 (2016).CrossRefGoogle Scholar
  138. 138.
    V. Shaverdova, S. Petrova, A. Purtseladze, L. Tarasashvili, and N. Obolashvili, Proc. SPIE 7957, 79570U (2011).ADSCrossRefGoogle Scholar
  139. 139.
    J. Aleksejeva, J. Teteris, and A. Tokmakovs, Phys. Proc. C 44, 19 (2013).ADSCrossRefGoogle Scholar
  140. 140.
    R. Kirby, R. G. Sabat, J.-M. Nunzi, and O. Lebel, J. Mater. Chem. C 2, 841 (2014).CrossRefGoogle Scholar
  141. 141.
    A. Gerbreders, A. Bulanovs, J. Mikelsone, K. Traskovskis, E. Potanina, A. Vembris, and J. Teteris, J. Non-Cryst. Solids 421, 48 (2015).ADSCrossRefGoogle Scholar
  142. 142.
    L. Nedelchev, D. Nazarova, V. Dragostinova, and D. Karashanova, Opt. Lett. 37, 2676 (2012).ADSCrossRefGoogle Scholar
  143. 143.
    L. Nazarova, D. Nedelchev, P. Sharlandjiev, and V. Dragostinova, Appl. Opt. 52, E28 (2013).ADSCrossRefGoogle Scholar
  144. 144.
    N. Berberova, L. Nazarova, B. Nedelchev, D. Blagoeva, V. Kostadinova, E. Marinova, and E. Stoykova, J. Phys.: Conf. Ser. 700, 012032 (2016).Google Scholar
  145. 145.
    N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, Opt. Mater. 64, 212 (2017).ADSCrossRefGoogle Scholar
  146. 146.
    J. Aleksejeva, M. Reinfelde, and J. Teteris, Can. J. Phys. 92, 1 (2014).CrossRefGoogle Scholar
  147. 147.
    L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, J. Mater. Chem. 20, 9161 (2010).CrossRefGoogle Scholar
  148. 148.
    J. Aleksejeva and J. Teteris, J. Non-Cryst. Solids 377, 209 (2013).ADSCrossRefGoogle Scholar
  149. 149.
    M. Häckel, L. Kador, D. Kropp, and H.-W. Schmidt, Adv. Mater. 19, 227 (2007).CrossRefGoogle Scholar
  150. 150.
    L. Mazaheri, S. Ahmadi-Kandjani, and J.-M. Nunzi, Opt. Commun. 298–299, 150 (2013).CrossRefADSGoogle Scholar
  151. 151.
    A. Sobolewska, J. Zawada, and S. Bartkiewicz, Langmuir 30, 17 (2014).CrossRefGoogle Scholar
  152. 152.
    Y. Zhang, J. Zhang, Z. Cui, Q. Chen, H. Zhang, and Z. Jiang, J. Polym. Sci., Part A 53, 936 (2015).CrossRefGoogle Scholar
  153. 153.
    Y. J. Liu, H. T. Dai, and X. W. Sun, J. Mater. Chem. 21, 2982 (2011).CrossRefGoogle Scholar
  154. 154.
    A. A. Freschi, F. S. de Vicente, T. B. Mello, D. A. Donatti, and D. R. Vollet, Appl. Phys. B 111, 103 (2013).ADSCrossRefGoogle Scholar
  155. 155.
    F. Gallego-Gomez, F. del Monte, and K. Meerholz, Nat. Mater. 7, 490 (2008).ADSCrossRefGoogle Scholar
  156. 156.
    C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Pinol, and L. Oriol, J. Phys. Chem. B 118, 11849 (2014).CrossRefGoogle Scholar
  157. 157.
    V. Yu. Venediktov, G. E. Nevskaya, and M. G. Tomilin, Opt. Spectrosc. 111, 113 (2011).ADSCrossRefGoogle Scholar
  158. 158.
    Q. Sun, P. Wu, S. Baig, H. Lu, and M. R. Wang, Proc. SPIE 7935, 79350Z (2011).ADSCrossRefGoogle Scholar
  159. 159.
    Y. Zhu, Y. Zhou, Z. Chen, R. Lin, and X. Wang, Polymer 53, 3566 (2012).CrossRefGoogle Scholar
  160. 160.
    P. Arora, F. Podgornov, M. V. Kozlovsky, S. Kaur, A. M. Biradar, and W. Haase, Phys. Scr. 85, 035405 (2012).ADSCrossRefGoogle Scholar
  161. 161.
    M. Ortuño, A. Márquez, S. Gallego, I. Pascual, and A. Beléndez, Int. J. Polym. Sci. 2014, 386736 (2014).CrossRefGoogle Scholar
  162. 162.
    T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, Ann. Rev. Mater. Sci. 30, 83 (2000).ADSCrossRefGoogle Scholar
  163. 163.
    G. Chen, M. Ni, H. Peng, F. Huang, Y. Liao, M. Wang, J. Zhu, V. A. L. Roy, and X. Xie, ACS Appl. Mater. Interfaces 9, 1810 (2017).CrossRefGoogle Scholar
  164. 164.
    H. Peng, S. Bi, M. Ni, X. Xie, Y. Liao, X. Zhou, Z. Xue, J. Zhu, Y. Wei, C. N. Bowman, and Y.-W. May, J. Am. Chem. Soc. 136, 8855 (2014).CrossRefGoogle Scholar
  165. 165.
    K. R. Sun and B. K. Kim, Polym. Adv. Technol. 22, 1993 (2011).CrossRefGoogle Scholar
  166. 166.
    W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, Proc. SPIE 8258, 82581J (2012).ADSCrossRefGoogle Scholar
  167. 167.
    N. H. Nataj, E. Mohajerani, H. Jashnsaz, and A. Jannesari, Appl. Opt. 51, 697 (2012).ADSCrossRefGoogle Scholar
  168. 168.
    T. Takanokura, M. Kurashige, K. Ishida, Y. Ohyagi, M. Watanabe, and Y. H. Cho, Proc. SPIE 7955, 79550W (2011).ADSCrossRefGoogle Scholar
  169. 169.
    Y. J. Liu, M. Lu, X. Ding, E. S. P. Leong, S.-C. S. Lin, J. Shi, J. H. Teng, L. Wang, T. J. Bunning, and T. J. Huang, J. Lab. Automat. 18, 291 (2012).CrossRefGoogle Scholar
  170. 170.
    A. Redler and H.-S. Kitzerow, Polym. Adv. Technol. 24, 7 (2013).CrossRefGoogle Scholar
  171. 171.
    A. Shishido and N. Akamatsu, Proc. SPIE 8475, 84750F (2012).ADSCrossRefGoogle Scholar
  172. 172.
    T. Sasaki, M. Ikegami, T. Abe, D. Miyazaki, S. Kajikawa, and Y. Naka, Appl. Phys. Lett. 102, 063306 (2013).ADSCrossRefGoogle Scholar
  173. 173.
    A. Ryabchun, A. Bobrovsky, A. Sobolewska, V. Shibaev, and J. Stumpe, J. Mater. Chem. 22, 6245 (2012).CrossRefGoogle Scholar
  174. 174.
    H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, Appl. Opt. 50, 4295 (2011).ADSCrossRefGoogle Scholar
  175. 175.
    J. Thomas, C. W. Christenson, P.-A. Blanche, M. Yamamoto, R. A. Norwood, and N. Peyghambarian, Chem. Mater. 23, 416 (2011).CrossRefGoogle Scholar
  176. 176.
    N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, Materials 5, 1477 (2012).ADSCrossRefGoogle Scholar
  177. 177.
    E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, Opt. Mater. 53, 146 (2016).ADSCrossRefGoogle Scholar
  178. 178.
    K. Kinashi, Y. Wang, A. Nonomura, W. Sakai, and N. Tsutsumi, Proc. SPIE 8474, 84740T (2012).ADSCrossRefGoogle Scholar
  179. 179.
    K. Kinashi, Y. Wang, A. Nonomura, S. Tsujimura, W. Sakai, and N. Tsutsumi, Polym. J. 45, 665 (2013).CrossRefGoogle Scholar
  180. 180.
    H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, Polym. J. 46, 59 (2014).CrossRefGoogle Scholar
  181. 181.
    R. C. Fontanilla-Urdaneta, A. Olivares-Pérez, I. Fuentes-Tapia, and M. A. Ríos-Velasco, J. Phys.: Conf. Ser. 274, 012037 (2011).Google Scholar
  182. 182.
    J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, New York, 2006).Google Scholar
  183. 183.
    C. Xu, C.-L. Zhang, X.-S. Leng, L. Xu, and Y.-H. Xu, Chin. Phys. B 22, 054203 (2013).ADSCrossRefGoogle Scholar
  184. 184.
    Y. Fan, C. Xu, Y. Wang, S. Xia, C. Guan, and L. Cao, J. Cryst. Growth 318, 657 (2011).ADSCrossRefGoogle Scholar
  185. 185.
    C. Xu, X. Leng, L. Xu, A. Wen, and Y. Xu, Opt. Commun. 285, 3868 (2012).ADSCrossRefGoogle Scholar
  186. 186.
    C. Xu, C. Yang, C. Zhu, T. Sun, R. Wang, and Y. Xu, Mater. Lett. 67, 320 (2012).CrossRefGoogle Scholar
  187. 187.
    T. Tian, Y. Kong, S. Liu, W. Li, L. Wu, S. Chen, and J. Xu, Opt. Lett. 37, 2679 (2012).ADSCrossRefGoogle Scholar
  188. 188.
    T. Sun, L. Dai, C. Xu, Z. Qian, D. Li, J. Lin, R. Wang, and Y. Xu, J. Mol. Struct. 1053, 1 (2013).ADSCrossRefGoogle Scholar
  189. 189.
    P. Mantashyan, Proc. SPIE 7998, 79980J (2011).CrossRefGoogle Scholar
  190. 190.
    C. Lv, Z.-J. Hu, A. Yan, Y. Jin, H. Chen, and J. Sun, Proc. SPIE 8847, 88471F (2013).ADSCrossRefGoogle Scholar
  191. 191.
    Y. Liu, Y. Zhou, M. Zhu, and C. He, J. Nonlin. Opt. Phys. Mater. 21, 1250052 (2012).ADSCrossRefGoogle Scholar
  192. 192.
    X.-C. Li, D.-X. Qu, X.-J. Zhao, X.-J. Meng, and L.-L. Zhang, Chin. Phys. B 22, 024203 (2013).ADSCrossRefGoogle Scholar
  193. 193.
    V. Marinova, R. C. Liu, S. H. Lin, and K. Y. Hsu, Opt. Express 20, 19628 (2012).ADSCrossRefGoogle Scholar
  194. 194.
    I. de Oliveira, J. F. Carvalho, Z. V. Fabris, and J. Frejlich, Proc. SPIE. 8785, 87852N (2013).CrossRefGoogle Scholar
  195. 195.
    D. Sharma, U. Gupta, and D. Mohan, J. Nonlin. Opt. Phys. Mater. 21, 1250053 (2012).ADSCrossRefGoogle Scholar
  196. 196.
    A.I. Ryskin, A.E. Angervaks, and A. V. Veniaminov, in Holographic Materials and Optical Systems, Ed. by I. Naydenov, D. Nazarov, and T. Babev (InTech, Rijeka, 2017), p. 405.Google Scholar
  197. 197.
    A. I. Ryskin, A. S. Shcheulin, and A. E. Angervaks, Materials 5, 784 (2012).ADSCrossRefGoogle Scholar
  198. 198.
    A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, Opt. Spectrosc. 110, 609 (2011).ADSCrossRefGoogle Scholar
  199. 199.
    A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, Opt. Spectrosc. 116, 379 (2014).ADSCrossRefGoogle Scholar
  200. 200.
    N. A. Davidenko, S. V. Dentarenko, Yu. P. Getmanchuk, A. A. Ishchenko, A. V. Kozinetz, L. I. Kostenko, E. V. Mokrinskaya, S. L. Studzinsky, V. A. Skryshevsky, O. V. Tretyak, and N. G. Chuprina, Mol. Cryst. Liq. Cryst. 535, 148 (2011).CrossRefGoogle Scholar
  201. 201.
    N. Davidenko, I. Davidenko, A. Ishchenko, A. Kulinich, V. Pavlov, S. Studzinsky, and N. Chuprina, Appl. Opt. 51, C48 (2012).CrossRefGoogle Scholar
  202. 202.
    N. A. Davidenko, I. I. Davidenko, V. V. Kravchenko, E. V. Mokrinskaya, V. A. Pavlov, V. S. Solnzev, S. Studzinsky, and N. G. Chuprina, J. Appl. Spectrosc. 83, 656 (2016).ADSCrossRefGoogle Scholar
  203. 203.
    Yu. P. Getmantchuk, N. A. Davidenko, L. P. Kunitskay, E. V. Mokrinskaya, S. Studzinsky, and N. G. Chuprina, High Energy Chem. 47, 182 (2013).CrossRefGoogle Scholar
  204. 204.
    Yu._P. Getmanchuk, N. A. Davidenko, L. R. Kunitskaya, and E. V. Mokrinskaya, Polym. Sci., Ser. B 55, 88 (2013).CrossRefGoogle Scholar
  205. 205.
    Yu._P. Getmantchuk, N. A. Davidenko, I. I. Davidenko, L. P. Kunitskaya, E. V. Mokrinskaya, G. I. Kozel, V. A. Pavlov, and N. G. Chuprina, Theor. Exp. Chem. 51, 104 (2015).CrossRefGoogle Scholar
  206. 206.
    Yu._P. Getmantchuk, N. A. Davidenko, I. I. Davidenko, E. V. Mokrinskaya, V. A. Pavlov, and N. G. Chuprina, Theor. Exp. Chem. 51, 67 (2015).CrossRefGoogle Scholar
  207. 207.
    A. K. Yetisen, Y. Montelongo, and H. Butt, Appl. Phys. Lett. 109, 061106 (2016).ADSCrossRefGoogle Scholar
  208. 208.
    J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Int. 2012, 803439 (2012).CrossRefGoogle Scholar
  209. 209.
    M. J. Ordonez-Padilla, A. Olivares-Perez, R. Vega-Criollo, L. R. Berriel-Valdos, and L. R. Mejias-Brizuela, Proc. SPIE 7957, 79570W (2011).Google Scholar
  210. 210.
    B. Pinto-Iguanero, A. Olivares-Pérez, S. Toxqui-López, and I. Fuentes-Tapia, Proc. SPIE 8281, 828115 (2012).Google Scholar
  211. 211.
    N. Y. Mejias-Brizuela, A. Olivares-Pérez, and A. Grande-Grande, J. Phys.: Conf. Ser. 274, 012034 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia
  2. 2.Interdepartmental Center for Analytical Research in Physics, Chemistry, and BiologyPresidium of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations