Advertisement

Optics and Spectroscopy

, Volume 123, Issue 4, pp 574–577 | Cite as

Photodesorption of rubidium atoms from a sapphire surface

  • P. A. Petrov
  • A. S. Pazgalev
  • M. A. Burkova
  • T. A. Vartanyan
Spectroscopy of Atoms and Molecules
  • 33 Downloads

Abstract

Photodesorption of rubidium atoms from crystalline sapphire surface is experimentally studied using the time-of-flight method and the total internal reflection effect. The adsorption energy of rubidium atoms on sapphire is determined to be ~0.7 eV. The dependence of the kinetic energy of desorbed rubidium atoms on the desorbing photon energy in the sapphire transparency range and in the absorption band of rubidium adatoms is determined. It is found that the average kinetic energy of outgoing atoms decreases at desorbing photon energies exceeding 2.3 eV. A model is proposed that relates the decrease in the kinetic energy of desorbed atoms to the appearance of a new channel of desorption of atoms in an excited electronic state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Atutov et al., Phys. Rev. A 67, 053401 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    C. Klempt et al., Phys. Rev. A 73, 013410 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    H. G. C. Werij, J. E. M. Haverkort, and J. P. Woerdman, Phys. Rev. A 33, 3270 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Bonch-Bruevich, T. A. Vartanyan, A. V. Gorlanov, Yu. N. Maksimov, S. G. Przhibel’skii, and V. V. Khromov, Sov. Phys. JETP 70, 993 (1990).Google Scholar
  5. 5.
    S. Gozzini et al., Opt. Commun. 88, 341 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    M. Meucci et al., Europhys. Lett. 25, 639 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    M. Stephens, R. Rhodes, and C. Wieman, J. Appl. Phys. 76, 3479 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    E. B. Alexandrov et al., Phys. Rev. A 66, 042903 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    J. Brewer et al., Phys. Rev. A 69, 062902 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    A. Cappello et al., J. Chem. Phys. 127, 044706 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    L. Kang-Jia et al., Chin. Phys. Lett. 32, 076801 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    A. Lucchesini et al., Coatings 6 (4), 47 (2016).CrossRefGoogle Scholar
  13. 13.
    L. Moi and S. Cartaleva, Europhys. News 43 (6), 24 (2012).CrossRefGoogle Scholar
  14. 14.
    H. Failache et al., Phys. Rev. Lett. 83, 5467 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Bonch-Bruevich, T. A. Vartanyan, S. G. Przhibel’ski, V. N. Smirnov, and V. V. Khromov, J. Exp. Theor. Phys. 100, 998 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    A. N. Nesmeyanov, Vapor Pressure of Chemical Elements (Akad. Nauk SSSR, Moscow, 1961) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. A. Petrov
    • 1
  • A. S. Pazgalev
    • 2
  • M. A. Burkova
    • 1
  • T. A. Vartanyan
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations