Advertisement

Optics and Spectroscopy

, Volume 123, Issue 1, pp 139–145 | Cite as

The effect of electromagnetically induced transparency in a potassium nanocell

  • A. Sargsyan
  • A. Amiryan
  • C. Leroy
  • T. A. Vartanyan
  • D. Sarkisyan
Nonlinear and Quantum Optics

Abstract

The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4S 1/2–4P 1/2–4S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by ~50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small (~462 MHz) hyperfine splitting of the lower 4S 1/2 level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Appl. Phys. B 105, 767 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. Sargsyan and D. Sarkisyan, Opt. Spectrosc. 111, 334 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, S. Cartaleva, and D. Sarkisyan, J. Mod. Opt. 62, 769 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, D. Sarkisyan, D. Slavov, and S. Cartaleva, Opt. Commum. 285, 2090 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 72, 011801 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    D. Slavov, A. Sargsyan, D. Sarkisyan, R. Mirzoyan, A. Krasteva, A. D. Wilson-Gordon, and S. Cartaleva, J. Phys. B 47, 035001 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    A. Sargsyan, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 4871 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    N. Hayashi, R. Sugizono, K. Harimaya, K. Shijo, K. Tsubota, and M. Mitsunaga, J. Opt. Soc. Am. B 32, 1754 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev. Lett. 98, 113003 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    J. Keaveney, A. Sargsyan, U. Krohn, D. Sarkisyan, A. Papoyan, and C. S. Adams, J. Phys. B 47, 075002 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. Sargsyan, D. Sarkisyan, L. Margalit, and A. D. Wilson-Gordon, J. Mod. Opt. 63, 1713 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    S. Gozzini, S. Cartaleva, A. Lucchesini, C. Marinelli, L. Marmugi, D. Slavov, and T. Karaulanov, Eur. Phys. J. D 53, 153 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    S. Gozzini, D. Slavov, S. Cartaleva, L. Marmugi, and A. Lucchesini, Acta Phys. Polon. A 116, 489 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    A. Sargsyan, P. A. Petrov, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 120, 339 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    A. Lampis, R. Culver, B. Megyeri, and J. Goldwin, Opt. Express 24, 15494 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, Appl. Phys. Lett. 85, 1460 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 29, 388 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    A. N. Litvinov, G. A. Kazakov, and B. G. Matisov, J. Phys. B 42, 165402 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    H. N. de Freitas, M. Oria, and M. Chevrollier, Appl. Phys. B 75, 703 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, Opt. Commun. 200, 201 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    A. Sargsyan, A. Tonoyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, and D. Sarkisyan, Eur. Phys. Lett. 110, 23001 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, and D. Sarkisyan, J. Phys. B 49, 075001 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    A. Sargsyan, A. V. Papoyan, D. Sarkisyan, and A. Weis, Eur. Phys. J. Appl. Phys. 48, 20701 (2009).CrossRefGoogle Scholar
  26. 26.
    D. Bloch, M. Ducloy, N. Senkov, V. Velichansky, and V. Yudin, Laser Phys. 6, 670 (1996).Google Scholar
  27. 27.
    K. Pahwa, L. Mudarikwa, and J. Goldwin, Opt. Express 20, 17456 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    W. Happer, Rev. Mod. Phys. 44, 169 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. Sargsyan
    • 1
  • A. Amiryan
    • 1
    • 2
  • C. Leroy
    • 2
  • T. A. Vartanyan
    • 3
  • D. Sarkisyan
    • 1
  1. 1.Institute for Physical ResearchNational Academy of Sciences of ArmeniaAshtarak-2Armenia
  2. 2.Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303Université de Bourgogne–Franche-ComtéDijonFrance
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations