Advertisement

Optics and Spectroscopy

, Volume 123, Issue 1, pp 150–157 | Cite as

On reflection of terahertz radiation from a rough surface

  • N. N. Rosanov
  • G. B. Sochilin
  • S. V. Fedorov
  • A. N. Shatsev
  • V. L. Malevich
  • G. V. Sinitsyn
Physical Optics

Abstract

We computationally analyze the influence of random inhomogeneities of the interface surface between two media that are diagnosed by the pulsed THz spectroscopy method. The statistics of inhomogeneities is characterized by the rms dispersion and correlation radius. The medium to be diagnosed is modeled by a Lorentz contour, the position and the width of which can serve as recognizable indicators. For monochromatic radiation and for a radiation pulse with a wide spectrum (close to the video pulse), a signal at a “point” detector is calculated in the absence and in the presence of inhomogeneities. The results yield conditions under which inhomogeneities significantly affect the recognition of different substances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2009).Google Scholar
  2. 2.
    Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science Business Media, Corvalis, 2009).Google Scholar
  3. 3.
    K. Choi, T. Hong, K. Sim, T. Ha, B. C. Park, J. H. Chung, S. G. Cho, and J. H. Kim, J. Appl. Phys. 115, 023105 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    L. A. Skvortsov, J. Appl. Spectrosc. 81, 725 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    S. Watanabe, N. Minami, and R. Shimano, Opt. Express 19, 1528 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Maragoni, G. Cerullo, A. Leitenstorfer, and R. Huber, Opt. Lett. 35, 2645 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Bespalov, A. A. Gorodetskii, I. Yu. Denisyuk, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, N. V. Petrov, and S. E. Putilin, J. Opt. Techol. 75, 636 (2008).CrossRefGoogle Scholar
  8. 8.
    J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, 6 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, IEEE J. Sel. Top. Quantum Electron. 14, 345 (2008).CrossRefGoogle Scholar
  10. 10.
    D. Turchinovich, J. M. Hvam, and M. C. Hoffmann, Phys. Rev. B 85, 201304(R) (2012).ADSCrossRefGoogle Scholar
  11. 11.
    Martinez P. G. de Alaiza, I. Babushkin, L. Berge, S. Skupin, E. Cabrera-Granado, C. Koehler, U. Morgner, A. Husakou, and J. Herrmann, Phys. Rev. Lett. 114, 183901 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    N. N. Rozanov, M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, and I. V. Babushkin, Opt. Spectrosc. 123 (1) (2017, in press).Google Scholar
  13. 13.
    K. I. Zaytsev, A. A. Gavdush, S. P. Lebedev, V. E. Karasik, and S. O. Yurchenko, Opt. Spectrosc. 118, 552 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, New York, 1979; Nauka, Fizmatlit, Moscow, 1972).Google Scholar
  15. 15.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. 2. Correlation Theory of Random Processes (Nauka, Fizmatlit, Moscow, 1978; Springer, Berlin, New York, 1987).zbMATHGoogle Scholar
  16. 16.
    Leung Tsang and Jin Au Kong, Scattering of Electromagnetic Waves: Advanced Topics (Wiley, New York, 2001).CrossRefGoogle Scholar
  17. 17.
    A. Ishimaru, Wave Propagation and Scattering Media (Academic, New York, 1978).zbMATHGoogle Scholar
  18. 18.
    N. V. Vysotina, N. N. Rozanov, G. B. Sochilin, S.V. Fedorov, A. N. Shatsev, V. L. Malevich, and G. V. Sinitsyn, Opt. Spectrosc. 123 (2017, in press).Google Scholar
  19. 19.
    N. N. Rozanov, Opt. Spectrosc. 107, 721 (2009).CrossRefGoogle Scholar
  20. 20.
    Y. Gao, T. Drake, Zh. Chen, and M. F. DeCamp, Opt. Lett. 33, 2776 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1979) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. N. Rosanov
    • 1
    • 2
    • 3
  • G. B. Sochilin
    • 1
  • S. V. Fedorov
    • 1
    • 2
  • A. N. Shatsev
    • 1
  • V. L. Malevich
    • 4
  • G. V. Sinitsyn
    • 4
  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Ioffe Technical Physical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.B.I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations