Advertisement

Optics and Spectroscopy

, Volume 123, Issue 1, pp 56–69 | Cite as

The re-entrant cholesteric phase of DNA

  • Yu. M. Yevdokimov
  • S. G. Skuridin
  • V. I. Salyanov
  • S. V. Semenov
  • E. V. Shtykova
  • L. A. Dadinova
  • O. N. Kompanets
  • E. I. Kats
Condensed-Matter Spectroscopy

Abstract

The character of packing of double-stranded DNA molecules in particles of liquid-crystal dispersions formed as a result of the phase exclusion of DNA molecules from aqueous salt polyethylene glycol solutions has been estimated by comparing the circular dichroism (CD) spectra of these dispersions recorded at different osmotic pressures and temperatures. It is shown that the first cycle of heating of dispersion particles with hexagonally packed double-stranded DNA molecules leads to the occurrence of abnormal optical activity of these particles, which manifests itself in the form of a strong negative CD band, characteristic of DNA cholesterics. Moreover, subsequent cooling is accompanied by a further increase in the abnormal optical activity, which indicates the existence of the “hexagonal → cholesteric packing” phase transition, controlled by both the osmotic pressure of the solution and its temperature. The result obtained can be described in terms of “quasi-nematic” layers composed of orientationally ordered DNA molecules in the structure of dispersion particles. There are two possible ways of packing for these layers, which determine their hexagonal or cholesteric spatial structure. The second heating → cooling cycle confirms these results and is indicative of possible differences in the packing of double-stranded DNA molecules in the hexagonal phase, which depend on the osmotic pressure of the solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Robinson, Tetrahedron 13, 219 (1961). doi 10.1016/S0040-4020(01)92215-XCrossRefGoogle Scholar
  2. 2.
    Y. Bouligand, in Solid State Physics, Suppl. 14: Liquid Crystals, Ed. by L. Liebert (Academic, New York, London, 1978), p. 259.Google Scholar
  3. 3.
    R. L. Rill, Proc. Natl. Acad. Sci. USA 83, 342 (1986). doi 10.1073/pnas.83.2.342ADSCrossRefGoogle Scholar
  4. 4.
    Yu. M. Yevdokimov, S. G. Skuridin, and V. I. Salyanov, Liquid Cryst. 3, 1443 (1988). doi 10.1080/02678298808086687CrossRefGoogle Scholar
  5. 5.
    F. Livolant, Physica A 176, 117 (1991). doi 10.1016/0378-4371(91)90436-GADSCrossRefGoogle Scholar
  6. 6.
    Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, DNA Liquid-Crystalline Dispersions and Nanoconstructions (CRC, Taylor and Francis Group, Boca Raton, London, New York, 2011).CrossRefGoogle Scholar
  7. 7.
    S. G. Skuridin, F. V. Vereshchagin, V. I. Salyanov, D. P. Chulkov, O. N. Kompanets, and Yu. M. Yevdokimov, Mol. Biol. (Moscow) 50, 783 (2016). doi 10.7868/S0026898416040121CrossRefGoogle Scholar
  8. 8.
    A. Goldar, H. Thomson, and J. M. Seddon, J. Phys.: Condens. Matter. 20, 035102 (2008). doi 10.1088/0953-8984/20/03/035102ADSGoogle Scholar
  9. 9.
    N. Biswas, M. Ichikawa, A. Datta, Yu. T. Sato, M. Yanagisawa, and K. Yoshikawa, Chem. Phys. Lett. 539–540, 157 (2012). doi 10.1016/j.cplett.2012.05.033CrossRefGoogle Scholar
  10. 10.
    S. Yasar, R. Podgornik, J. Valle-Orero, M. R. Johnson, and V. A. Parsegian, Sci. Rep. 4, 6877 (2014). doi 10.1038/srep06877ADSCrossRefGoogle Scholar
  11. 11.
    M. Leonard, H. Hong, N. Easwar, and H. H. Strey, Polymer 42, 5823 (2001). doi 10.1016/S0032-3861(00)00903-4CrossRefGoogle Scholar
  12. 12.
    A. Gautier, L. Michel-Salamin, E. Tosi-Couture, A. W. McDowall, and J. Dubochet, J. Ultrastruct. Mol. Struct. Res. 97, 10 (1986). doi 10.1016/S0889-1605(86)80003-9CrossRefGoogle Scholar
  13. 13.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, and E. I. Kats, Dokl. Phys. Chem. 467, 53 (2016). doi 10.7868/S0869565216110165CrossRefGoogle Scholar
  14. 14.
    Y. M. Yevdokimov, S. G. Skuridin, S. V. Semenov, L. A. Dadinova, V. I. Salyanov, and E. I. Kats, J. Biol. Phys. (2016). doi 10.1007/s10867-016-9433-4Google Scholar
  15. 15.
    V. A. Parsegian, R. P. Rand, N. L. Fuller, and D. C. Rau, Methods Enzymol. 127, 400 (1986). doi 10.1016/0076-6879(86)27032-9CrossRefGoogle Scholar
  16. 16.
    K. S. Kazanskii, S. A. Dubrovskii, and N. V. Antoshchenko, Polymer Sci., Ser. A 39, 544 (1997).Google Scholar
  17. 17.
    S. V. Semenov and Yu. M. Yevdokimov, Biophysics 60, 188 (2015). PMID: 26016021CrossRefGoogle Scholar
  18. 18.
    Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, S. V. Semenov, and O. N. Kompanets, The CD Spectra of Double-Stranded DNA Liquid Crystalline Dispersions (Nova Science, New York, 2011).CrossRefGoogle Scholar
  19. 19.
    P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, and D. I. Svergun, J. Appl. Crystallogr. 36, 1277 (2003). doi 10.1107/s0021889803012779CrossRefGoogle Scholar
  20. 20.
    B. K. Vainshtein, Diffraction of X-Rays by Chain Molecules (Akad. Nauk SSSR, Moscow, 1963; Elsevier, Amsterdam, London, New York, 1966).Google Scholar
  21. 21.
    H. Zipper, H. Brunner, J. Bernhagen, and F. Vitzthum, Nucl. Acids Res. 32, E103 (2004). doi 10.1093/nar/gnh101CrossRefGoogle Scholar
  22. 22.
    Yu. M. Yevdokimov, V. I. Salyanov, M. N. Savvateev, V. A. Dubinskaya, and S. G. Skuridin, Tekhnol. Zhiv. Sist. 10 (1), 20 (2013).Google Scholar
  23. 23.
    Yu. M. Evdokimov, T. L. Pyatigopckaya, O. F. Polivtsev, N. M. Akimenko, D. Ya. Tsvankin, and Ya. M. Varshavskii, Mol. Biol. 10, 1221 (1976).Google Scholar
  24. 24.
    S. G. Skuridin, H. Damaschun, G. Damaschun, Y. M. Yevdokimov, and R. Misselwitz, Stud. Biophys. 112, 139 (1986).Google Scholar
  25. 25.
    W. C. Brunner and M. F. Maestre, Biopolymers 13, 345 (1974). doi 10.1002/bip.1974.360130210CrossRefGoogle Scholar
  26. 26.
    F. Livolant, Eur. J. Cell Biol. 33, 300 (1984). PMID: 6538843Google Scholar
  27. 27.
    M. F. Maestre and C. Reich, Biochemistry 19, 5214 (1980). doi 10.1021/bi00564a010CrossRefGoogle Scholar
  28. 28.
    F. Livolant and M. M. Maestre, Biochemistry 27, 3056 (1988). doi 10.1021/bi00408a058CrossRefGoogle Scholar
  29. 29.
    H. H. Strey, J. Wang, R. Podgornik, A. Rupprecht, L. Yu, V. A. Parsegian, and E. B. Sirota, Phys. Rev. Lett. 84, 3105 (2000). doi 10.1103/PhysRevLett.84.3105ADSCrossRefGoogle Scholar
  30. 30.
    R. L. Rill, T. E. Strzelecka, M. W. Davidson, and D. H. van Winkle, Physica A 176, 87 (1991). doi 10.1016/0378-4371(91)90435-FGoogle Scholar
  31. 31.
    F. Livolant and A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996). doi 10.1016/S0079-6700(96)00016-0CrossRefGoogle Scholar
  32. 32.
    L. V. Azaroff, Mol. Cryst. Liq. Cryst. 60, 73 (1980). doi 10.1080/00268948008072426CrossRefGoogle Scholar
  33. 33.
    R. Podgornik, H. H. Strey, and V. A. Parsegian, Curr. Opin. Colloid. Interface Sci. 3, 534 (1998). doi 10.1016/S1359-0294(98)80029-0CrossRefGoogle Scholar
  34. 34.
    A. Pal, A. Kamal, and V. A. Raghunathan, Sci. Rep. 6, 32313 (2016). doi 10.1038/srep32313ADSCrossRefGoogle Scholar
  35. 35.
    T. Odjik, Philos. Trans.: Math. Phys. Eng. Sci. 362, 1497 (2004). doi 10.1098/rsta.2004.1385ADSCrossRefGoogle Scholar
  36. 36.
    A. G. Cherstvy, J. Phys. Chem. B 112, 12585 (2008). doi 10.1021/jp801220pGoogle Scholar
  37. 37.
    S. Skuridin, N. Badaev, A. Dembo, G. Lortkipanidze, and Yu. Yevdokimov, Liquid Cryst. 1, 51 (1988). doi 10.1080/02678298808086349CrossRefGoogle Scholar
  38. 38.
    D. Grasso, S. Fasone, C. la Rosa, and V. Salyanov, Liquid Cryst. 9, 299 (1991). doi 10.1080/02678299108035507CrossRefGoogle Scholar
  39. 39.
    D. Grasso, R. Gabriele-Campisi, and C. la Rosa, Thermochim. Acta 199, 239 (1992). doi 10.1016/0040-6031(92)80268-2CrossRefGoogle Scholar
  40. 40.
    C. B. Stanley, H. Hong, and H. H. Strey, Biophys. J. 89, 2552 (2005). doi 10.1529/biophysj.105.064550CrossRefGoogle Scholar
  41. 41.
    D. C. Rau, B. Lee, and V. A. Parsegian, Proc. Natl. Acad. Sci. USA 81, 2621 (1984). http://www.pnas.org/content/81/9/2621.full.pdf.ADSCrossRefGoogle Scholar
  42. 42.
    R. Podgornik, H. H. Strey, K. Gawrish, D. C. Rau, A. Rupprecht, and V. A. Parsegian, Proc. Natl. Acad. Sci. USA 93, 4261 (1996). http://www.pnas.org/content/93/9/4261.full.pdf.ADSCrossRefGoogle Scholar
  43. 43.
    J. Ubbink and T. Odijk, Biophys. J. 68, 54 (1995). doi 10.1016/S0006-3495(95)80158-XADSCrossRefGoogle Scholar
  44. 44.
    F. Livolant and A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996). doi 10.1016/S0079-6700(96)00016-0CrossRefGoogle Scholar
  45. 45.
    N. Sundaresan, T. Thomas, T. J. Thomas, and C. K. Pillai, Macromol. Biosci. 6, 27 (2006). doi 10.1002/mabi.200500145CrossRefGoogle Scholar
  46. 46.
    R. L. Rill, F. Livolant, H. C. Aldrich, and M. W. Davidson, Chromosoma 98, 280 (1989). doi 10.1007/BF00327314CrossRefGoogle Scholar
  47. 47.
    A. Leforestier and F. Livolant, Biol. Cell. 71, 115 (1991). doi 10.1016/0248-4900(91)90058-UCrossRefGoogle Scholar
  48. 48.
    A. Kornyshev, S. Leikin, and S. V. Malinin, Eur. Phys. J. E 7, 83 (2002). doi 10.1140/epje/i200101159CrossRefGoogle Scholar
  49. 49.
    S. P. Papkov and V. G. Kulichikhin, Liquid Crystal State of Polymers (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  50. 50.
    A. A. Kornyshev, D. J. Lee, S. Leikin, and A. Wynveen, Rev. Mod. Phys. 79, 943 (2007). doi 10.1103/RevMod-Phys.79.943ADSCrossRefGoogle Scholar
  51. 51.
    T. T. Nguyen, J. Chem. Phys. 144, 065102 (2016). doi 10.1063/1.4940312ADSCrossRefGoogle Scholar
  52. 52.
    S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, UK, 1992). doi 10.1017/CBO9780511622496CrossRefGoogle Scholar
  53. 53.
    R. D. Kamien and J. V. Selinger, J. Phys.: Condens. Matter 13, R1 (2001). doi 10.1088/0953-8984/13/3/201ADSGoogle Scholar
  54. 54.
    A. B. Harris, R. D. Kamien, and T. C. Lubensky, Phys. Rev. Lett. 78, 1476 (1997). doi 10.1103/PhysRev-Lett.78.1476ADSCrossRefGoogle Scholar
  55. 55.
    F. Tombolato and A. Ferrarini, J. Chem. Phys. 122, 54908 (2005). doi 10.1063/1.1839859ADSCrossRefGoogle Scholar
  56. 56.
    K. Kassapidou and J. R. C. van der Maarel, Eur. Phys. J. B 3, 471 (1988). doi 10.1007/s100510050337ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. M. Yevdokimov
    • 1
  • S. G. Skuridin
    • 1
  • V. I. Salyanov
    • 1
  • S. V. Semenov
    • 2
  • E. V. Shtykova
    • 3
  • L. A. Dadinova
    • 3
  • O. N. Kompanets
    • 4
  • E. I. Kats
    • 5
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Russian Research Centre Kurchatov InstituteMoscowRussia
  3. 3.Shubnikov Institute for Crystallography, Federal Scientific Research Center Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia
  4. 4.Institute of SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussia
  5. 5.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations