Optics and Spectroscopy

, Volume 122, Issue 6, pp 851–858 | Cite as

The structure and vibrational spectral parameters of a complex of HF with the planar (H2CO)2 dimer

  • V. P. Bulychev
  • A. M. Koshevarnikov
  • K. G. Tokhadze
Spectroscopy of Atoms and Molecules


Equilibrium nuclear configurations of the planar formaldehyde homodimer (H2CO)2 and the (H2CO)2···HF complex are determined in the MP2/6-311++G(3df, 3pd) approximation taking into account the superposition error of basis sets of monomers. Harmonic values of the frequencies and intensities of fundamental transitions between vibrational states of these hydrogen-bonded complexes were calculated using the Gaussian 09 package of programs. Anharmonic values of the frequencies and intensities of the ν(H–F) stretching vibration and several intermolecular vibrations in the (H2CO)2···HF trimer were obtained from variational solutions of one-, two-, and three-dimensional vibrational Schrödinger equations. The anharmonic influence of the C=O and hydrogen bond O···H–F stretching vibrations, as well as of librational vibrations of monomers, on the spectral parameters of the strongest ν(H–F) absorption band of trimer was studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Philpotts, D. O. Evans, and N. Sheppard, Trans. Faraday Soc. 51, 1051 (1955).CrossRefGoogle Scholar
  2. 2.
    J. M. Hermida-Ramon and M. A. Rios, J. Phys. Chem. A 102, 10818 (1998).CrossRefGoogle Scholar
  3. 3.
    A. Nowek and J. Leszczynski, Struct. Chem. 6, 255 (1995).CrossRefGoogle Scholar
  4. 4.
    R. M. Minyaev, A. G. Starikov, and E. A. Lepin, Russ. Chem. Bull. 47, 2078 (1998).CrossRefGoogle Scholar
  5. 5.
    R. Li, Zh. Li, D. Wu, X. Hao, R. Li, and Ch. Sun, Int. J. Quantum Chem. 103, 299 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    F. A. Baiocchi and W. Klemperer, J. Chem. Phys. 78, 3509 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    F. J. Lovas, R. D. Suenram, S. Ross, and M. Klobukowski, J. Mol. Spectrosc. 123, 167 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    T. A. Ford and L. Glasser, J. Mol. Struct.: THEOCHEM 398–399, 381 (1997).CrossRefGoogle Scholar
  9. 9.
    A. Vila, A. M. Graña, and R. A. Mosquera, Chem. Phys. 281, 11 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    G. A. Dolgonos, Chem. Phys. Lett. 585, 37 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    E. van Dornshuld, Ch.M. Holy, and G. S. Tschumper, J. Phys. Chem. A 118, 3376 (2014).CrossRefGoogle Scholar
  12. 12.
    B. Nelander, J. Chem. Phys. 73, 1034 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    F. J. Lovas, R. D. Suenram, L. H. Coudert, Th. A. Blake, K. J. Grant, and S. E. Novick, J. Chem. Phys. 92, 891 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, et al., Gaussian 03, Rev. B.05 (Gaussian Inc., Pittsburgh, PA, 2003).Google Scholar
  15. 15.
    V. P. Bulychev, Z. Mil’ke, K. G. Tokhadze, and S. S. Utkina, Opt. Spectrosc. 86, 352 (1999).ADSGoogle Scholar
  16. 16.
    V. P. Bulychev, E. I. Gromova, and K. G. Tokhadze, J. Phys. Chem. A 112, 1251 (2008).CrossRefGoogle Scholar
  17. 17.
    V. P. Bulychev and K. G. Tokhadze, J. Mol. Struct. 976, 255 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    V. P. Bulychev, M. V. Buturlimova, and K. G. Tokhadze, J. Phys. Chem. A 117, 9093 (2013).CrossRefGoogle Scholar
  19. 19.
    V. P. Bulychev, E. A. Svishcheva, and K. G. Tokhadze, Spectrochim. Acta A 117, 679 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. P. Bulychev
    • 1
  • A. M. Koshevarnikov
    • 1
  • K. G. Tokhadze
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations