Advertisement

Optics and Spectroscopy

, Volume 122, Issue 5, pp 735–748 | Cite as

Optical spectra and emission characteristics of terbium-doped potassium–lead double chloride crystals (KPb2Cl5:Tb3+)

  • A. M. Tkachuk
  • S. E. Ivanova
  • A. A. Mirzaeva
  • L. I. Isaenko
Condensed-Matter Spectroscopy
  • 57 Downloads

Abstract

Optical transitions in KPb2Cl5:Tb3+ crystals are studied experimentally and theoretically. The absorption cross-section spectra are plotted and the oscillator strengths of transitions from the ground terbium state to excited multiplets are determined. Intensity parameters Ωt for KPC:Tb3+ are determined by the Judd–Ofelt method to be Ω2 = 2.70 × 10–20 cm2, Ω4 = 7.0 × 10–20 cm2, and Ω6 = 0.72 × 10–20 cm2. These values were used to calculate such characteristics of spontaneous radiative transitions as oscillator strengths, probabilities of radiative transitions, and radiative lifetimes. The emission spectra of KPb2Cl5:Tb3+ crystals upon UV excitation and the decay kinetics of luminescence from the excited 5 D 3 and 5 D 4 levels are studied experimentally, the lifetimes of these levels are determined, and the dependences of the rates of nonradiative relaxation from the excited 7 F j (j = 0–5), 5 D 4, and 5 D 3 levels to lower-lying terbium levels are calculated. It is shown that the population of the 5 D 4 level in KPC:Tb3+ crystals occurs according to a cascade scheme, which leads to quenching of the 5 D 3 level. The calculated data agree well with the known experimental rates of multiphonon nonradiative transitions for Dy:KPC, Nd:KPC, Er:KPC, Tb:KPB, and Nd:KPB crystals. It is shown that transitions in the near-IR (3–6 μm) region in double halide crystals (MPb2Hal5) are almost unquenched and the rates of nonradiative relaxation of excited levels spaced by energy gaps ΔE ji > 1000 cm–1 are W ji NR < 103s–1. This circumstance suggests that it is possible to obtain stimulated emission in KPb2Cl5:RE3+ crystals in the IR spectral region up to 6 μm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. I. Isaenko, A. P. Yelisseyev, A. M. Tkachuk, and S. E. Ivanova, in Mid-Infrared Coherent Sources and Application, Springer Ser. B: Phys. Biophys., Ed. by M. Ebrahimzadeh and I. Sorokina (Springer, Berlin, Dordrecht, 2008), p. 21.Google Scholar
  2. 2.
    K. Rademaker, W. F. Krupke, K. Petermann, G. Huber, L. Isaenko, A. Yelisseyev, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, J. Opt. Soc. Am. 21, 2117 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, IEEE J. Quantum Electron. 32, 646 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, J. Lightwave Technol. 15, 786 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, OSA Trends Opt. Photonics Ser. 34, 459 (2000).Google Scholar
  6. 6.
    M. Velázquez, A. Ferrier, J.-P. Chaminade, B. Menaert, and R. Moncorge, J. Cryst. Growth 286, 324 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    K. Rademaker, E. Heumann, G. Huber, S. A. Payne, W. F. Krupke, L. I. Isaenko, and A. Burger, Opt. Lett. 30, 729 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    S. R. Bowman, S. K. Searles, N. W. Jenkins, S. B. Qadri, E. F. Skelton, and J. Ganem, in Proceedings of the Conference on Lasers and Electro-Optics CLEO 2001, Baltimore, Maryland, May 8–10, 2001, CFD2, p. 557.Google Scholar
  9. 9.
    G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and A. V. Shestakov, Quantum Electron. 36, 41 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, OSA Trends Opt. Photonics Ser. 26, 441 (1999).Google Scholar
  11. 11.
    A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, I. A. Shestakova, N. V. Lichkova, V. N. Zagorodnev, and A. V. Shestakov, J. Opt. Soc. Am. B 24, 2690 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Wang, J. Li, C. Tu, Z. You, Z. Zhu, and B. Wu, Cryst. Res. Technol. 42, 1063 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Tkachuk, S. Ivanova, L. Isaenko, Yelissey, S. Payne, R. Solarz, M. Nostrand, R. Page, and S. Payne, Acta Phys. Polon. A 95, 381 (1999).CrossRefGoogle Scholar
  14. 14.
    A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, and V. A. Pustovarov, OSA Trends Opt. Photonics Ser. 98, 69 (2005).Google Scholar
  15. 15.
    J. L. Doualan and R. Moncorge, Ann. Chim. Sci. Mater., No. 28, 5 (2003).Google Scholar
  16. 16.
    A. Tkachuk, S. Ivanova, L. Isaenko, A. Yelisseyev, D. I. Mironov, M. Nostrand, R. Page, and S. Payne, Proc. SPIE 4766, 22 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, and L. I. Isaenko, in Proceedings of the of the Conference on Lasers and Electro-Optics CLEO-2000, San Francisco, May 7–12, 2000, p. 566.Google Scholar
  18. 18.
    L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, Proc. SPIE 4900, 962 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Eliseev, M.-F. Joubert, Y. Guyot, and S. Payne, Opt. Spectrosc. 95, 722 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    A. Tkachuk, S. Ivanova, L. Isaenko, A. Yelisseyev, D. I. Mironov, M. Nostrand, R. Page, and P. Steve, Proc. SPIE 4766, 22 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, J. Opt. Soc. Am. B 18, 264 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Eliseev, S. Payne, R. Solarz, R. Page, and M. Nostrand, Opt. Spectrosc. 92, 83 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, J. Lumin. 94, 107 (2001).CrossRefGoogle Scholar
  24. 24.
    M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, J. Opt. Soc. Am. B 18, 264 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zavgorodnev, OSA Trends Opt. Photonics Ser. 83, 303 (2003).Google Scholar
  26. 26.
    R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, J. Lumin. 97, 190 (2002).CrossRefGoogle Scholar
  27. 27.
    R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, Phys. Rev. B 68, 165101 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    A. Mendioroz, R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, Opt. Mater. 26, 351 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, V. A. Pustovarov, M.-F. Joubert, Y. Guyot, and V. P. Gapontsev, OSA Trends Opt. Photonics Ser. 98, 69 (2005).Google Scholar
  30. 30.
    A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, and R. Balda, Opt. Lett. 27, 1523 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    A. Ivanov, Y. Rozhdestvensky, and E. Perlin, J. Opt. Soc. Am. B 32, 47 (2015).CrossRefGoogle Scholar
  32. 32.
    A. M. Tkachuk, A. V. Poletimova, M. A. Petrova, V. Yu. Egorov, and N. E. Korolev, Opt. Spectrosc. 70, 719 (1991).ADSGoogle Scholar
  33. 33.
    B. R. Judd, Phys. Rev. 127, 750 (1963).ADSCrossRefGoogle Scholar
  34. 34.
    G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).ADSCrossRefGoogle Scholar
  35. 35.
    B. H. Carnall, W. T. Matsinger, V. Donlan, and G. T. Surratt, J. Chem. Phys. 49, 4412 (1972).CrossRefGoogle Scholar
  36. 36.
    T. Miyakava and D. L. Dexter, Phys. Rev. B 1, 2961 (1970).ADSCrossRefGoogle Scholar
  37. 37.
    L. A. Riseberg and H. W. Moos, Phys. Rev. 174, 429 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. M. Tkachuk
    • 1
  • S. E. Ivanova
    • 1
  • A. A. Mirzaeva
    • 1
    • 2
  • L. I. Isaenko
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Vavilov State Optical InstituteSt. PetersburgRussia
  3. 3.Institute of Mineralogy and Petrography, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations