Advertisement

Optics and Spectroscopy

, Volume 122, Issue 4, pp 602–606 | Cite as

Polarized fluorescence in NADH under two-photon excitation with femtosecond laser pulses

  • O. S. Vasyutinskii
  • A. G. Smolin
  • C. Oswald
  • K. H. Gericke
Condensed-Matter Spectroscopy

Abstract

Polarized fluorescence decay in NADH molecules in aqueous solution under two-photon excitation by femtosecond laser pulses has been studied. The excitation was carried out by linear and circularly polarized radiation at four wavelengths: 720, 730, 740, and 750 nm. Time-dependent polarized fluorescence signals were recorded as a function of the excitation light polarization and used for determination of a set of molecular parameters, two lifetimes characterizing the molecular excited states, and the rotation correlation time τrot. The results obtained can be used to create and prove theoretical models describing the intensity and polarization of fluorescence in NADH involved in the regulation of the redox reactions in cells and tissues of living organisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. W. G. Visser and A. van Hoek, Photochem. Photobiol. 3, 35 (1981).Google Scholar
  2. 2.
    R. V. Hull, P. S. Conger, and R. J. Hoobler, Biophys. Chem. 90, 9 (2001).CrossRefGoogle Scholar
  3. 3.
    H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, J. Biol. Chem. 280, 25119 (2005).CrossRefGoogle Scholar
  4. 4.
    J. de Ruyck, M. Fameree, J. Wouters, E. A. Perpete, J. Preat, and D. Jacquemin, Chem. Phys. Lett. 450, 119 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Yu and A. A. Heikal, J. Photochem. Photobiol. B 95, 46 (2009).CrossRefGoogle Scholar
  6. 6.
    T. S. Blacker, R. J. Marsh, M. R. Duchen, and A. J. Bain, Chem. Phys. 422, 184 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    J. R. Lakowicz, Topics in Fluorescence Spectroscopy, Vol. 5: Nonlinear and Two-Photon-Induced Fluorescene (Plenum, New York, 1997).Google Scholar
  8. 8.
    W. M. McClain, Acc. Chem. Res. 7, 129 (1974).CrossRefGoogle Scholar
  9. 9.
    W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 4951 (1990).CrossRefGoogle Scholar
  10. 10.
    P. S. Shternin, K. H. Gericke, and O. S. Vasyutinskii, Mol. Phys. 108, 813 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    S. Denicke, K. H. Gericke, A. G. Smolin, P. S. Shternin, and O. S. Vasyutinskii, J. Phys. Chem. A 114, 9681 (2010).CrossRefGoogle Scholar
  12. 12.
    S. Herbrich, K.-H. Gericke, A. G. Smolin, and O. S. Vasyutinskii, J. Phys. Chem. A 118, 5248 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Herbrich, T. Al-Hadhuri, K.-H. Gericke, P. S. Shternin, A. G. Smolin, and O. S. Vasyutinskii, J. Chem. Phys. 142, 024310 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    P. R. Callis, J. Chem. Phys. 99, 27 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    W. M. McClain, J. Chem. Phys. 57, 2264 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. S. Vasyutinskii
    • 1
  • A. G. Smolin
    • 1
  • C. Oswald
    • 2
  • K. H. Gericke
    • 2
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institut für Physikalische und Theoretische ChemieTU BraunschweigBraunschweigGermany

Personalised recommendations