Optics and Spectroscopy

, Volume 122, Issue 2, pp 163–167 | Cite as

A comparative study of the processes of generation of singlet oxygen upon irradiation of aqueous preparations on the basis of chlorin e6 and coproporphyrin III

  • I. V. Bagrov
  • I. M. Belousova
  • S. I. Gorelov
  • M. V. Dobrun
  • V. M. Kiselev
  • I. M. Kislyakov
  • A. V. Kris’ko
  • T. K. Kris’ko
Spectroscopy of Atoms and Molecules

Abstract

The photosensitizing ability of an agent based on chlorin e6 (Photoditazin), which is used for photodynamic diagnosis and therapy, is compared with that of a new preparation on the basis of coproporphyrin III in the environment of a phosphate buffer and a simulated biological environment (albumin solution). The efficiency of singlet-oxygen production was estimated by EPR spectroscopy and spectroscopy in the UV and visible ranges with the use of “chemical traps” of singlet oxygen. By irradiating drugs with LED emission centered at λmax = 520 nm, we determined the quantum yield of singlet-oxygen production in a buffer solution; the obtained values are 0.60 and 0.37 for chlorine and coproporphyrin, respectively. The steady-state concentration of singlet oxygen upon irradiation of solutions of the studied photosensitizers with concentrations of 12–43 μМ and the density of radiation power within the 6–96 W/cm2 region was found to be in the region of 1010–1011 molecules/cm3. It is shown that the introduction into the solution of egg albumin (0.1%) reduces the sensitizing properties of the two drugs by two to three times, while the efficiencies of the preparations with respect to singlet-oxygen production become almost identical (0.19 and 0.17).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Belousova, M. V. Dobrun, L. V. Galebskaya, S. I. Gorelov, I. M. Kislyakov, S. E. Kolbasov, A. V. Kris’ko, T. K. Kris’ko, M. A. Malkov, T. D. Murav’eva, and N. N. Petrishchev, Proc. SPIE–Int. Soc. Opt. Eng. 7822, 78220W (2010).Google Scholar
  2. 2.
    I. Kraljic, S. Et. Mohsni, and M. Arvis, Photochem. Photobiol. 27, 531 (1978).CrossRefGoogle Scholar
  3. 3.
    I. Kraljic and S. Et. Mohsni, Photochem. Photobiol. 28, 577 (1978).CrossRefGoogle Scholar
  4. 4.
    T. K. Kris’ko and I. M. Kysliakov, J. Opt. Technol. 76, 332 (2009).CrossRefGoogle Scholar
  5. 5.
    I. E. Kochevar and R. W. Redmond, Methods Enzymol. 319, 20 (2000).CrossRefGoogle Scholar
  6. 6.
    Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, and T. Nagano, J. Am. Chem. Soc. 125, 12803 (2003).CrossRefGoogle Scholar
  7. 7.
    Thi Hai Yen Tran, E. V. Ignat’eva, A. P. Polozkova, G. V. Ramenskaya, and N. A. Oborotova, Pharmaceut. Chem. J. 44, 337 (2010).CrossRefGoogle Scholar
  8. 8.
    A. V. Reshetnikov, V. I. Shvets, and G. V. Ponomarev, Achievements of Porphyrin Chemistry (NII Khim. SPbGU, St. Petersburg, 1999), Vol. 2, p. 70 [in Russian].Google Scholar
  9. 9.
    F. Yasuo, O. Motoo, and K. Ichiro, FRG Patent No. 2809093 (1978).Google Scholar
  10. 10.
    A. A. Krasnovskii, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Lazer. Fiz. 3, 63 (1990).Google Scholar
  11. 11.
    N. G. Karapetyan and V. N. Madakyan, Russ. J. Bioorg. Chem. 30, 172 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Bagrov
    • 1
  • I. M. Belousova
    • 1
    • 2
  • S. I. Gorelov
    • 3
  • M. V. Dobrun
    • 3
  • V. M. Kiselev
    • 1
  • I. M. Kislyakov
    • 2
  • A. V. Kris’ko
    • 1
  • T. K. Kris’ko
    • 1
    • 2
  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Clinical Hospital no. 122 Named after L.G. SokolovSt. PetersburgRussia

Personalised recommendations