Optics and Spectroscopy

, Volume 122, Issue 1, pp 25–29 | Cite as

The influence of ligand type on self-organization and optical properties of cadmium selenide quantum dots

  • E. V. Ushakova
  • T. K. Kormilina
  • M. A. Burkova
  • S. A. Cherevkov
  • V. V. Zakharov
  • V. K. Turkov
  • A. V. Fedorov
  • A. V. Baranov
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)
  • 42 Downloads

Abstract

A method for successive replacement of organic shells of colloidal cadmium selenide quantum dots (QDs) of different sizes is proposed. It is found that the spectral parameters of QD samples depend on the type of organic shells. It is shown that the structural morphology is independent of the QD size and is determined by the chemical composition of the organic shell. Spectral analysis of the luminescence of QD-based superstructures shows that the luminescence wavelength and intensity strongly depend on the degree of QD surface passivation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. P. Collier, T. Vossmeyer, and J. R. Heath, Ann. Rev. Phys. Chem. 49, 371 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    Z. Nie, A. Petukhova, and E. Kumacheva, Nat. Nanotechnol. 5, 15 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Baranov et al., Langmuir 31, 506 (2015).CrossRefGoogle Scholar
  4. 4.
    G. J. Vroege and H. N. W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    S. T. Hyde, in Handbook of Applied Surface and Colloid Chemistry, Ed. by K. Holmberg (Wiley, New York, 2001), p. 299.Google Scholar
  6. 6.
    K. J. M. Bishop et al., Small 5, 1600 (2009).CrossRefGoogle Scholar
  7. 7.
    A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, Opt. Lett. 38, 2259 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    D. V. Talapin et al., Chem. Rev. 110, 389 (2009).CrossRefGoogle Scholar
  9. 9.
    E. V. Ushakova et al., Opt. Express, No. 24, A58 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    C. B. Murray, C. R. Kagan, and M. G. Bawendi, Ann. Rev. Mater. Sci. 30, 545 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    J. Tang and E. H. Sargent, Adv. Mater. 23, 12 (2011).CrossRefGoogle Scholar
  12. 12.
    L. Miao et al., ACS Nano 8, 3743 (2014).CrossRefGoogle Scholar
  13. 13.
    C. P. Soman and T. D. Giorgio, Langmuir 24, 4399 (2008).CrossRefGoogle Scholar
  14. 14.
    M. P. Pileni, in Nanoparticles and Nanostructured Films, Ed. by J. H. Fender (Wiley, Chichester, 1998).Google Scholar
  15. 15.
    M. H. Huang and S. Thoka, Nano Today 10, 81 (2015).CrossRefGoogle Scholar
  16. 16.
    C. Y. Chiu et al., J. Am. Chem. Soc. 137, 2265 (2015).CrossRefGoogle Scholar
  17. 17.
    B. A. Helms et al., Adv. Mater. 27, 5820 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Ushakova
    • 1
  • T. K. Kormilina
    • 1
  • M. A. Burkova
    • 1
  • S. A. Cherevkov
    • 1
  • V. V. Zakharov
    • 1
  • V. K. Turkov
    • 1
  • A. V. Fedorov
    • 1
  • A. V. Baranov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations