Optics and Spectroscopy

, Volume 122, Issue 1, pp 64–68 | Cite as

Optical activity of semiconductor nanocrystals with ionic impurities

  • N. V. Tepliakov
  • A. S. Baimuratov
  • Yu. K. Gun’ko
  • A. V. Baranov
  • A. V. Fedorov
  • I. D. Rukhlenko
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)
  • 32 Downloads

Abstract

The strength of the enantioselective interaction of chiral semiconductor nanocrystals with circularly polarized light can be varied over a wide range, which finds a series of important applications in modern nanophotonics. As a rule, this interaction is relatively weak, because the dimension of nanocrystals is much smaller than the wavelength of the optical radiation, and the optical activity of nanocrystals is rather low. In this work, we show theoretically that, by applying ion doping, one can significantly enhance the optical activity of nanocrystals and to vary its magnitude over a wide range of values and over a wide range of frequencies. We show that, by precisely arranging impurities inside nanocrystals, one can optimize the rotatory strengths of intraband transitions, making them 100 times stronger than typical rotatory strengths of small chiral molecules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Nguyen, H. He, and C. Pham-Huy, Int. J. Biomed. Sci. 2, 85 (2006).Google Scholar
  2. 2.
    W. H. Brooks, W. C. Guida, and K. G. Daniel, Curr. Top. Med. Chem. 11, 760 (2011).CrossRefGoogle Scholar
  3. 3.
    G. Gübitz and M. G. Schmid, Mol. Biotech. 32, 159 (2006).CrossRefGoogle Scholar
  4. 4.
    N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Nanophotonics (2016, in press).Google Scholar
  5. 5.
    I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, Opt. Lett. 41, 2438 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Appl. Phys. 119, 194302 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, Nano Lett. 15, 2844 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P.Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, Sci. Rep. 5, 14712 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, Nano Lett. 15, 1710 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    A. Hazarika, A. Layek, S. De, A. Nag, S. Debnath, P. Mahadevan, A. Chowdhury, and D. D. Sarma, Phys. Rev. Lett. 110, 267401 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, ACS Nano 6, 8913 (2012).Google Scholar
  12. 12.
    W. M. Witzel, A. Shabaev, C. S. Hellberg, V. L. Jacobs, and A. L. Efros, Phys. Rev. Lett. 105, 137401 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    N. V. Tepliakov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Express 24, A52 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Phys. Chem. C 120, 2379 (2016).CrossRefGoogle Scholar
  15. 15.
    S. D. Elliot, M. P. Moloney, and Y. K. Gun’ko, Nano Lett. 8, 2452 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    P. M. Bayley, E. B. Nielsen, and J. A. Shellman, J. Phys. Chem. 73, 228 (1969).CrossRefGoogle Scholar
  17. 17.
    H. Giessen and R. Vogelgesang, Science 326, 529 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    M. Wakabayashi, S. Yokojima, T. Fukaminato, K. Shiino, M. Irie, and S. Nakamura, J. Phys. Chem. A 118, 5046 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. V. Tepliakov
    • 1
  • A. S. Baimuratov
    • 1
  • Yu. K. Gun’ko
    • 1
    • 2
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  • I. D. Rukhlenko
    • 1
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.School of Chemistry and CRANN InstituteTrinity College, DublinDublin 2Ireland
  3. 3.Monash University, Clayton CampusClaytonAustralia

Personalised recommendations