Optics and Spectroscopy

, Volume 122, Issue 1, pp 114–119 | Cite as

Hybrid structures based on quantum dots and graphene nanobelts

  • I. A. Reznik
  • Yu. A. Gromova
  • A. S. Zlatov
  • M. A. Baranov
  • A. O. Orlova
  • S. A. Moshkalev
  • V. G. Maslov
  • A. V. Baranov
  • A. V. Fedorov
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)

Abstract

Luminescence and photoelectric properties of hybrid structures based on CdSe/ZnS quantum dots (QDs) and multilayer graphene have been investigated. A correlation between the luminescence quantum yield of QDs and their photoelectric properties in hybrid structures is established. It is shown that a decrease in the QD luminescence quantum yield due to adsorption of 1-(2-pyridylazo)-2-naphtol azo dye molecules onto the QD surface and a photoinduced increase in the QD luminescence quantum yield are accompanied by a symbate change in the hybrid structure photoconductivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. C. Neto et al., Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    H. Lee et al., J. Mater. Chem. 22, 8372 (2012).CrossRefGoogle Scholar
  3. 3.
    M. A. Reed et al., Phys. Rev. Lett. 60, 535 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996)CrossRefGoogle Scholar
  5. 4a.
    S. J. Byrne, S. A. Corr, T. Y. Rakovich, et al., J. Mater. Chem. 16, 2896 (2006).CrossRefGoogle Scholar
  6. 5.
    Y. L. Chen et al., Appl. Phys. Lett. 105, 021104 (2014).ADSCrossRefGoogle Scholar
  7. 6.
    P. T. Yin et al., Phys. Chem. Chem. Phys. 15, 12785 (2013).CrossRefGoogle Scholar
  8. 7.
    G. Konstantatos et al., Nat. Nanotechnol. 7, 363 (2012).ADSCrossRefGoogle Scholar
  9. 8.
    Y. A. Gromova et al., Proc. SPIE 9126, 91262K (2014).CrossRefGoogle Scholar
  10. 9.
    Y. Gromova et al., J. Appl. Phys. 118, 104305 (2015).ADSCrossRefGoogle Scholar
  11. 10.
    L. Sun et al., J. Alloys Compd. 632, 604 (2015).CrossRefGoogle Scholar
  12. 11.
    V. A. Krivenkov et al., J. Phys.: Conf. Ser. 541, 012045 (2014).Google Scholar
  13. 12.
    P. Reiss, J. Bleuse, and A. Pron, Nano Lett. 2, 781 (2002).ADSCrossRefGoogle Scholar
  14. 13.
    A. V. Alaferdov et al., Bull. Russ. Acad. Sci.: Phys. 78, 1357 (2014).CrossRefGoogle Scholar
  15. 14.
    W. R. Algar et al., J. Am. Chem. Soc. 134, 1876 (2012).CrossRefGoogle Scholar
  16. 15.
    Y. A. Gromova et al., Nanoscale Res. Lett. 8, 1 (2013).CrossRefGoogle Scholar
  17. 16.
    S. F. Lee and M. A. Osborne, ChemPhysChem. 10, 2174 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Reznik
    • 1
  • Yu. A. Gromova
    • 1
  • A. S. Zlatov
    • 1
  • M. A. Baranov
    • 1
  • A. O. Orlova
    • 1
  • S. A. Moshkalev
    • 2
  • V. G. Maslov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.State University of Campinas (Unicamp)CampinasBrazil

Personalised recommendations