Optics and Spectroscopy

, Volume 122, Issue 1, pp 74–78 | Cite as

Silicon photonic structures with embedded polymers for novel sensing methods

  • E. V. Osipov
  • I. L. Martynov
  • D. S. Dovzhenko
  • P. S. Ananev
  • G. E. Kotkovskii
  • A. A. Chistyakov
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)
  • 32 Downloads

Abstract

At present time research and development of a new generation of optical sensors using conjugated polymers, in particular sensors of explosives are actively underway. Nevertheless, the problems of the sensitivity, selectivity, and stability of such sensors are still of great interest. One of the ways to solve the problem is the creation of luminescence sensors based on photonic crystals with a high specific surface area, which have significant sorption ability and allow to effective modulate emission properties of luminophores. In this paper, porous silicon microcavities with embeded organic polyphenylenevinylene- (PPV) and polyfluorene- (PF) type polymers were created. It was shown that polymer infiltration in porous silicon microcavities leads to modification of their luminescence properties, which is expressed in narrowing of the emission spectrum and changing of its directional pattern. It was demonstrated that such structures exhibit sensitivity to saturated vapors of trinitrotoluene. The structures proposed can be treated as a basis for development of new type of sensors used for detection of vapors of nitroaromatic compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Sun, Y. Wang, and Y. Lei, Chem. Soc. Rev. 44, 8019 (2015).CrossRefGoogle Scholar
  2. 2.
    C. P. Chang, C. Y. Chao, J. H. Huang, A. K. Li, C. S. Hsu, M. S. Lin, B. R. Hsieh, and A. C. Su, Synth. Met. 144, 297 (2004).CrossRefGoogle Scholar
  3. 3.
    D. Gopalakrishnan and W. R. Dichtel, J. Am. Chem. Soc. 135, 8357 (2013).CrossRefGoogle Scholar
  4. 4.
    H. Li, J. Wang, Z. Pan, L. Cui, L. Xu, R. Wang, Y. Song, and L. Jiang, J. Mater. Chem. 21, 1730 (2011).CrossRefGoogle Scholar
  5. 5.
    I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, Appl. Phys. Lett. 90, 041904 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    W. T. Brady and H. R. O’Neal, J. Polym. Sci. B: Polym. Lett. 2, 647 (1964).CrossRefGoogle Scholar
  7. 7.
    D. Jarzab, M. Lu, H. T. Nicolai, P. W. M. Blom, and M. A. Loi, Soft Matter 7, 1702 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    A. N. Aleshin, I. P. Shcherbakov, E. L. Alexandrova, and E. A. Lebedev, Solid State Commun. 146, 161 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Tokranova, S. W. Novak, J. Castracane, and I. A. Levitsky, J. Phys. Chem. C 117, 22667 (2013).CrossRefGoogle Scholar
  10. 10.
    H. Qiao, B. Guan, T. Böcking, M. Gal, J. J. Gooding, and P. J. Reece, Appl. Phys. Lett. 96, 161106 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    V. K. Dwivedi, K. Pradeesh, and G. V. Prakash, Appl. Surf. Sci. 257, 3468 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    D. S. Dovzhenko, I. L. Martynov, P. S. Samokhvalov, K. E. Mochalov, A. A. Chistyakov, and I. Nabiev, Proc. SPIE 9885, 988507 (2016).CrossRefGoogle Scholar
  13. 13.
    P. A. Haigh, F. Bausi, Z. Ghassemlooy, I. Papakonstantinou, M. H. Le, C. Fléchon, and F. Cacialli, Opt. Express 22, 2830 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    A. Calzolari, B. Vercelli, A. Ruini, T. Virgili, and M. Pasini, J. Phys. Chem. C 117, 26760 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Osipov
    • 1
  • I. L. Martynov
    • 1
  • D. S. Dovzhenko
    • 1
  • P. S. Ananev
    • 1
  • G. E. Kotkovskii
    • 1
  • A. A. Chistyakov
    • 1
  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations