Optics and Spectroscopy

, Volume 122, Issue 1, pp 96–100 | Cite as

Circular dichroism spectroscopy of chlorin e6 and its complexes with quantum dots in different media

  • E. V. Kundelev
  • A. O. Orlova
  • V. G. Maslov
  • A. V. Baranov
  • A. V. Fedorov
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)

Abstract

The circular dichroism (CD) spectra of chlorin e6 and its complexes with ZnS:Mn/ZnS and CdSe/ZnS quantum dots (QDs) in aqueous solutions with different pH, in methanol, and in dimethyl sulfoxide (DMSO) have been experimentally investigated. The changes in the CD spectra of free chlorin e6 caused by its complexing with semiconductor QDs are analyzed. The application of CD spectroscopy made it possible to record for the first time the CD spectrum of luminescent dimer of chlorin e6 and reveal a nonluminescent aggregate of chlorin e6 (interpreted preliminary as a “tetramer”), the anisotropy factor of which exceeds that of its monomer by a factor of 40. An analysis of the experimental data shows that chlorin e6 in a complex with QDs can be either in the monomeric form or in the form of a nonluminescent “tetramer.” The interaction with a relatively low-stable luminescent dimer of chlorin e6 with QDs leads to its partial monomerization and formation of complexes where chlorin e6 is in the monomeric form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy (Wiley, Hoboken, NJ, 2012).CrossRefGoogle Scholar
  2. 2.
    K. Nakanishi, N. Berova, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley-VCH, New York, 2000).Google Scholar
  3. 3.
    C. Houssier and K. Sauer, J. Am. Chem. Soc. 92, 779 (1970).CrossRefGoogle Scholar
  4. 4.
    J. Govan, A. Loudon, A. V. Baranov, A. V. Fedorov, and Yu. Gun’ko, Proc. SPIE 9126, 912619 (2014).CrossRefGoogle Scholar
  5. 5.
    T. G. Rudenko, A. B. Shekhter, A. E. Guller, N. A. Aksenova, N. N. Glagolev, A. V. Ivanov, R. K. Aboyants, S. L. Kotova, and A. B. Solovieva, Photochem. Photobiol. 90, 1413 (2014).CrossRefGoogle Scholar
  6. 6.
    B. Cunderlicova, L. Gangeskar, and J. Moan, J. Photochem. Photobiol. B 53, 81 (1999).CrossRefGoogle Scholar
  7. 7.
    Sh. Paul, S. Selvam, P. W. S. Heng, and L. W. Chan, J. Fluoresc. 23, 1065 (2013).CrossRefGoogle Scholar
  8. 8.
    Sh. Paul, P. W. S. Heng, and L. W. Chan, J. Fluoresc. 23, 287 (2013).Google Scholar
  9. 9.
    H. A. Isakau, M. V. Parkhats, V. N. Knyukshto, B. M. Dzhagarov, E. P. Petrov, and P. T. Petrov, J. Photochem. Photobiol. B 92, 165 (2008).CrossRefGoogle Scholar
  10. 10.
    M. V. Parkhatsa, V. A. Galievsky, A. S. Stashevsky, T. V. Trukhacheva, and B. M. Dzhagarov, Opt. Spectrosc. 107, 974 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. K. Visheratina, I. V. Alisova, E. V. Kundelev, A.O.Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, Opt. Spectrosc. 109, 733 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    D. R. Dadadzhanov, I. V. Martynenko, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, Opt. Spectrosc. 119, 738 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Kundelev
    • 1
  • A. O. Orlova
    • 1
  • V. G. Maslov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations