Optics and Spectroscopy

, Volume 122, Issue 1, pp 79–82 | Cite as

Modeling of the optical properties of porous silicon photonic crystals in the visible spectral range

  • D. S. Dovzhenko
  • I. L. Martynov
  • I. S. Kryukova
  • A. A. Chistyakov
  • I. R. Nabiev
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)

Abstract

Optical devices based on photonic crystals are of great interest because they can be efficiently used in laser physics and biosensing. Photonic crystals allow one to control the propagation of electromagnetic waves and to change the emission characteristics of luminophores embedded into photonic structures. One of the most interesting materials for developing one-dimensional photonic crystals is porous silicon. However, an important problem in application of this material is the control of the refractive index of layers by changing their porosity, as well as the refractive index dispersion. In addition, it is important to have the possibility of modeling the optical properties of structures to choose precisely select the fabrication parameters and produce one-dimensional photonic crystals with prescribed properties. In order to solve these problems, we used a mathematical model based on the transfer matrix method, using the Bruggeman model, and on the dispersion of silicon refractive index. We fabricated microcavities by electrochemical etching of silicon, with parameters determined by the proposed model, and measured their reflection spectra. The calculated results showed good agreement with experimental data. The model proposed allowed us to achieve a microcavity Q-factor of 160 in the visible region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Troia, A. Paolicelli, F. de Leonardis, and V. M. N. Passaro, in Advances in Photonic Crystals, Ed. by V. M. N. Passaro (InTech, Croatia, 2013), p. 241.Google Scholar
  2. 2.
    D. Threm, Y. Nazirizadeh, and M. Gerken, J. Biophoton. 5, 601 (2012).CrossRefGoogle Scholar
  3. 3.
    C. Pacholski, Sensors (Basel) 13, 4694 (2013).CrossRefGoogle Scholar
  4. 4.
    G. E. Kotkovskiy, Y. A. Kuzishchin, I. L. Martynov, A. A. Chistyakov, and I. Nabiev, Phys. Chem. Chem. Phys. 14, 13890 (2012).CrossRefGoogle Scholar
  5. 5.
    D. Dovzhenko, E. Osipov, I. Martynov, P. Linkov, and A. Chistyakov, Phys. Proc. 73, 126 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    M. Khardani, M. Bouaïcha, and B. Bessaïs, Phys. Status Solidi 4, 1986 (2007).CrossRefGoogle Scholar
  7. 7.
    P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, Appl. Phys. Lett. 81, 4895 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Green and M. J. Keevers, Prog. Photovolt. 3, 189 (1995).CrossRefGoogle Scholar
  9. 9.
    P. Pirasteh, Y. G. Boucher, J. Charrier, and Y. Dumeige, Phys. Status Solidi 1975, 1971 (2007).CrossRefGoogle Scholar
  10. 10.
    D. S. Dovzhenko, I. Martynov, P. Samokhvalov, and I. Eremin, Proc. SPIE 9126, 91263O (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. S. Dovzhenko
    • 1
  • I. L. Martynov
    • 1
  • I. S. Kryukova
    • 1
  • A. A. Chistyakov
    • 1
  • I. R. Nabiev
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.University of Reims, Champagne-ArdenneReimsFrance

Personalised recommendations