Optics and Spectroscopy

, Volume 122, Issue 1, pp 42–47 | Cite as

Optical activity of helical quantum-dot supercrystals

  • A. S. Baimuratov
  • N. V. Tepliakov
  • Yu. K. Gun’ko
  • A. V. Baranov
  • A. V. Federov
  • I. D. Rukhlenko
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)


The size of chiral nanoparticles is much smaller than the optical wavelength. As a result, the difference in interaction of enantiomers with circularly polarized light of different handedness is practically unobservable. Due to the large mismatch in scale, the problem of enhancement of enantioselectivity of optical properties of nanoparticles is particularly important for modern photonics. In this work, we show that ordering of achiral nanoparticles into a chiral supercrystal with dimensions comparable to the wavelength of light allows achieving nearly total dissymmetry of optical absorption and demonstrate this using a helical super-crystal made of semiconductor quantum dots as an example. The proposed approach may find numerous applications in various optical and analytical methods used in biomedicine, chemistry, and pharmacology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Gur, S. F. Bent, and F. B. Prinz, J. Phys. Chem. C 118, 21301 (2014).CrossRefGoogle Scholar
  2. 2.
    J. R. Szczech, J. M. Higgins, and S. Jin, J. Mater. Chem. 21, 4037 (2011).CrossRefGoogle Scholar
  3. 3.
    P. Duan, H. Cao, L. Zhang, and M. Liu, Soft Matter 10, 5428 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Wang, J. Xu, Y. Wang, and H. Chen, Chem. Soc. Rev. 42, 2930 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Xia, Y. Zhou, and Z. Tang, Nanoscale 3, 1374 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, et al., Nanophotonics 5, 573 (2016).CrossRefGoogle Scholar
  7. 7.
    N. V. Tepliakov and A. S. Baimuratov, J. Appl. Phys. 119, 194302 (2016).Google Scholar
  8. 8.
    I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, et al., Opt. Lett. 41, 2438 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, et al., Sci. Rep. 3, 1727 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, et al., Sci. Rep. 6, 23321 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    V. Rumyantsev, S. Fedorov, K. Gumennyk, et al., Sci. Rep. 4, 6945 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    T. Wang, D. LaMontagne, J. Lynch, et al., Chem. Soc. Rev. 42, 2804 (2013).CrossRefGoogle Scholar
  13. 13.
    A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, Opt. Lett. 38, 2259 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    J. Nossa and A. Camacho, Microelectron. J. 39, 1251 (2008).CrossRefGoogle Scholar
  15. 15.
    K. Thorkelsson, P. Bai, and T. Xu, Nano Today 10, 48 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Kuzyk, R. Schreiber, Z. Fan, et al., Nature 483, 311 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    M. V. Mukhina, V. G. Maslov, A. V. Baranov, et al., Opt. Lett. 38, 3426 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    J. S. Kamal, R. Gomes, Z. Hens, et al., Phys. Rev. B 85, 035126 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Baimuratov
    • 1
  • N. V. Tepliakov
    • 1
  • Yu. K. Gun’ko
    • 1
    • 2
  • A. V. Baranov
    • 1
  • A. V. Federov
    • 1
  • I. D. Rukhlenko
    • 1
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.School of Chemistry and CRANN InstituteTrinity College, DublinDublin 2Ireland
  3. 3.Monash University, Clayton CampusClaytonAustralia

Personalised recommendations