Optics and Spectroscopy

, Volume 121, Issue 6, pp 790–797 | Cite as

Studying the regime of complete decoupling of the bond between the electron and nuclear moments at the D1-line of the 39K potassium isotope using a spectroscopic microcell

  • A. Sargsyan
  • A. Amiryan
  • T. A. Vartanyan
  • D. Sarkisyan
Spectroscopy of Atoms and Molecules

Abstract

Atomic transitions of the 39K potassium isotope in strong (up to 1 kG) longitudinal and transverse magnetic fields have been studied with a high spectral resolution. It has been shown that crossover resonances are almost absent in the saturated absorption spectrum of potassium vapors in a 30-μm-thick microcell. This, together with the small spectral width of atomic transitions (~30 MHz), allows one to use the saturated absorption spectrum for determining frequencies and probabilities of individual transitions. Among the alkali metals, potassium atoms have the smallest magnitude of the hyperfine splitting of the lower level. This allows one to observe the break of the coupling between the electronic and nuclear angular momentums at comparatively low magnetic fields B > 500 G, i.e., to implement the hyperfine Paschen–Back regime (HPB). In the HPB regime, four equidistantly positioned transitions with the same amplitude are detected in circularly polarized light (σ+). In linearly polarized light (π) at the transverse orientation of the magnetic field, the spectrum consists of eight lines which are grouped in two groups each of which consists of four lines. Each group has a special distinguished G-transition and the transition that is forbidden in the zero magnetic field. In the HPB regime, the probabilities of transitions in a group and derivatives of their frequency shifts with respect to the magnetic field asymptotically tend to magnitudes that are typical for the aforesaid distinguished G-transition. Some practical applications for the used microcell are mentioned.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference of Atomic States (Nauka, Moscow, 1991) [in Russian].Google Scholar
  2. 2.
    A. Sargsyan, A. Tonoyan, G. Hakhumyan, et al., Laser Phys. Lett. 11, 055701 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, Eur. Phys. J. D 66, 119 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Zentile, D. J. Whiting, J. Keaveney, et al., Opt. Lett. 40, 2000 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    M. A. Zentile, R. Andrews, L. Weller, et al., J. Phys. B: At., Mol., Opt. Phys. 47, 075005 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, A. Stabrawa, and W. Gawlik, Opt. Lett. 39, 2270 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Zentile, J. S. Keaveney, L. Weller, et al., Comput. Phys. Commun. 189, 162 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    B. A. Olsen, B. Patton, Y.-Y. Jau, et al., Phys. Rev. A 84, 063410 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. Sargsyan, G. Hakhumyan, C. Leroy, et al., Opt. Lett. 37, 1379 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. Sargsyan, G. Hakhumyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 98, 441 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, J. Opt. Soc. Am. B 31, 1046 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    A. Sargsyan, A. Tonoyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, and D. Sarkisyan, Europhys. Lett. 110, 23001 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, Opt. Spectrosc. 109, 529 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    A. Sargsyan, B. Glushko, and D. Sarkisyan, J. Exp. Theor. Phys. 120, 579 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargysyan, D. Sarkisyan, B. Gmeiner, V. Sandoghdar, and C. S. Adams, J. Phys.: Conf. Ser. 635, 122006 (2015).ADSGoogle Scholar
  17. 17.
    A. Sargsyan, G. Hakhumyan, A. Papoyan, et al., Appl. Phys. Lett. 93, 021119 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    D. Bloch, M. Ducloy, et al., Laser Phys. 6, 670 (1996).Google Scholar
  19. 19.
    A. Sargsyan, D. Sarkisyan, A. Papoyan, et al., Laser Phys. 18, 749 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    J. A. Zieliska, F. A. Beduini, N. Godbout, and M. W. Mitchell, Opt. Lett. 37, 524 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    D. A. Steck, Rubidium 87 d line data. http://steck.us/alkalidata.Google Scholar
  22. 22.
    A. Sargsyan, G. Hakhumyan, A. Tonoyan, P. A. Petrov, and T. A. Vartanyan, Opt. Spectrosc. 119, 202 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    A. Sargsyan, G. Hakhumyan, A. Papoyan, and D. Sarkisyan, JETP Lett. 101, 303 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    A. Sargsyan, P. A. Petrov, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 120, 339 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. Sargsyan
    • 1
  • A. Amiryan
    • 1
    • 2
  • T. A. Vartanyan
    • 3
  • D. Sarkisyan
    • 1
  1. 1.Institute for Physical ResearchNational Academy of Sciences of ArmeniaAshtarak-2Armenia
  2. 2.Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303Université Bourgogne–Franche-ComtéDijonFrance
  3. 3.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations