Optics and Spectroscopy

, Volume 121, Issue 6, pp 867–873 | Cite as

Influence of complexing ion on the fluorescence sensitization efficiency for oxazine dyes in nanoparticles of Sc, Eu, Sm, and Lu diketonates

Condensed-Matter Spectroscopy

Abstract

The fluorescence sensitization regularities have been investigated for oxazine dyes (Nile blue, cresyl violet (oxazine-9), and oxazine-170) in nanoparticles of complexes of 2-naphthoyltrifluoroacetone with trivalent ions of rare-earth metals. The fluorescence sensitization efficiencies of dyes in nanoparticles from the Sc(III), Eu(III), Sm(III), and Lu(III) complexes are compared. It is shown that the fluorescence sensitization efficiencies of dyes in nanoparticles from the Sc(III), Eu(III), and Sm(III) complexes has similar values and greatly exceed that for nanoparticles from the Lu(III) complexes. The quantum yields of sensitized fluorescence are determined for dyes in nanoparticles from the Sc(III), Eu(III), and Sm(III) complexes. The nanoparticles doped with oxazine-170 from Eu(III) complexes are found to have the strongest fluorescence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. S. Wolfbeis, Chem. Soc. Rev. 44, 4743 (2015).CrossRefGoogle Scholar
  2. 2.
    V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 81, 769 (2012).CrossRefGoogle Scholar
  3. 3.
    S. S. Dudar’, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 104, 225 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    E. R. Goldman, A. R. Clapp, G. P. Anderson, H. T. Uyeda, J. M. Mauro, I. L. Medintz, and H. Mattoussi, Anal. Chem. 76, 684 (2004).CrossRefGoogle Scholar
  5. 5.
    M. A. Shivkumar, K. S. Adarsh, and S. R. Inamdar, J. Lumin. 143, 680 (2013).CrossRefGoogle Scholar
  6. 6.
    M. S. Smirnov, O. V. Ovchinnikov, T. S. Shatskikh, A. G. Vitukhnovsky, S. A. Ambrozevich, and A. S. Perepelitsa, J. Lumin. 156, 212 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Bhattacharyya, B. Paramanik, and A. Patra, J. Phys. Chem. C 115, 20832 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Kar, A. Kundu, S. Bhattacharyya, S. Mandal, and A. Patra, RSC Adv. 207890, 13372 (2013).CrossRefGoogle Scholar
  9. 9.
    W. Di, J. Li, N. Shirahata, and Y. Sakka, Nanotecnology 21, 455703 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 117, 896 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    E. B. Sveshnikova, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 110, 256 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 115, 53 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    K. Rurack and M. Spieles, Anal. Chem. 83, 1232 (2011).CrossRefGoogle Scholar
  14. 14.
    R. Sens and K. H. Drexhage, J. Lumin. 24–25, 709 (1981).CrossRefGoogle Scholar
  15. 15.
    E. B. Sveshnikova and V. L. Ermolaev, Opt. Spectrosc. 117, 220 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations