Optics and Spectroscopy

, Volume 121, Issue 6, pp 851–855 | Cite as

Metal clusters and nanoparticles in dielectric matrices: Formation and optical properties

Condensed-Matter Spectroscopy

Abstract

The optical properties of thin dielectric films with metal inclusions and their dependence on thermal and laser annealing are studied experimentally. Metal clusters (Ag, Au, and Cu) in dielectric materials (Al2O3 and SiO2) are obtained by simultaneous vacuum deposition of metal and dielectric on the surface of a corresponding dielectric substrate (sapphire and quartz). It is shown that, depending on the deposited dielectric material, on the weight ratio of deposited metal and dielectric, and on the subsequent thermal treatment, one can obtain different metal structures, from clusters with a small number of atoms to complex dendritic plasmonic structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Y. Yan, W. Zhang, Z. X. Zhao, W. C. Lu, and H. X. Zhang, Theor. Chem. Acc. 131, 1200 (2012). doi 10.1007/s00214-012-1200-4CrossRefGoogle Scholar
  2. 2.
    B. Santiago-González, C. Vázquez-Vázquez, M. C. Blanco-Varela, J. M. Gaspar Martinho, J. M. Ramallo-López, F. G. Requejo, and M. A. López-Quintela, J. Colloid Interface Sci. 455, 154 (2015). doi 10.1016/ j.jcis.2015.05.042CrossRefGoogle Scholar
  3. 3.
    L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, Science 291, 103 (2001). doi 10.1126/science.291.5501.103ADSCrossRefGoogle Scholar
  4. 4.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003). doi 10.1021/jp026731yCrossRefGoogle Scholar
  5. 5.
    J. P. Wilcoxon and B. L. Abrams, Chem. Soc. Rev. 35, 1162 (2006). doi 10.1039/b517312bCrossRefGoogle Scholar
  6. 6.
    V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, Opt. Mater. 36, 753 (2014). doi 10.1016/j.optmat.2013.11.018ADSCrossRefGoogle Scholar
  7. 7.
    F. Conus, J. T. Lau, V. Rodrigues, and C. Felix, Rev. Sci. Instrum. 77, 113103 (2006). doi 10.1063/1.2369640ADSCrossRefGoogle Scholar
  8. 8.
    N. B. Leonov, I. A. Gladskikh, V. A. Polishchuk, and T. A. Vartanyan, Opt. Spectrosc. 119, 450 (2015). doi 10.1134/S0030400X15090179ADSCrossRefGoogle Scholar
  9. 9.
    M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, and C. Félix, J. Chem. Phys. 129, 194108 (2008). doi 10.1063/1.3013557ADSCrossRefGoogle Scholar
  10. 10.
    V. G. Grigoryan, M. Springborg, H. Minassian, and A. Melikyan, Comput. Theor. Chem. 1021, 197 (2013). doi 10.1016/j.comptc.2013.07.022CrossRefGoogle Scholar
  11. 11.
    S. Lecoultre, A. Rydlo, C. Felix, J. Buttet, S. Gilb, and W. Harbich, J. Chem. Phys. 134, 074302 (2011). doi 10.1063/1.3537739ADSCrossRefGoogle Scholar
  12. 12.
    T. Linnert, P. Mulvaney, A. Henglein, and H. WeUer, J. Am. Chem. Soc. 112, 46574664 (1990). doi 10.1021/ ja00168a005CrossRefGoogle Scholar
  13. 13.
    Y. Wei, Y. Chen, L. Ye, and P. Chang, Mater. Res. Bull. 46, 929 (2011). doi 10.1016/j.materresbull.2011.02.025CrossRefGoogle Scholar
  14. 14.
    P. S. Mdluli and N. Revaprasadu, Mater. Lett. 63, 447 (2009). doi 10.1016/j.matlet.2008.11.024CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations