Advertisement

Optics and Spectroscopy

, Volume 121, Issue 6, pp 798–803 | Cite as

Near-resonant rovibronic Raman scattering from 0 g + (bb) valence state via the D0 u + ion-pair state in iodine molecule

  • V. V. Baturo
  • I. N. Cherepanov
  • S. S. Lukashov
  • A. N. Petrov
  • S. A. Poretsky
  • A. M. PravilovEmail author
Spectroscopy of Atoms and Molecules
  • 31 Downloads

Abstract

Near-resonant Raman scattering from the electronic excited \({I_2}\left( {0_g^ + \left( {bb} \right)\xrightarrow{{hv}}D0_u^ + \to X0_g^ + } \right)\) state via the intermediate ion-pair D0 u + state to the X one is observed for the first time. The Raman scattering follows a laser pulse. Its intensity I R is inversely proportional to the squared value of detuning from the resonant D, 22, 51 ← 0 g +(bb), 7, 52 transition, (Δν2)2, according to the theory of near-resonant Raman scattering. The ratio of Raman DX scattering intensity to that of the D0 u +, ν D = 22, J D = 51 → X0 g + luminescence, I R /I DX < 1.5 × 10–4 for Δν2 > 0.5 cm–1. The Raman and luminescence spectra are found to be identical.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Koningstein, Ann. Rev. Phys. Chem. 24, 121 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    R. J. H. Clark and T. J. Dines, Mol. Phys. 45, 1153 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    D. A. Long, The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, New York, 2002).Google Scholar
  4. 4.
    Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).Google Scholar
  5. 5.
    L. J. Zych, J. Lukashik, J. F. Young, and S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    J. C. White and D. Henderson, Phys. Rev. A 25, 1226 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    J. Strempel and W. Kiefer, Can. J. Chem. 69, 1732 (1991).CrossRefGoogle Scholar
  8. 8.
    S. Grafe, W. Kiefer, and V. Engel, J. Chem. Phys. 127, 124306 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    L. Matsuoka, K. Yokoyama, and A. Yokoyama, Phys. Rev. A 79, 061404 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    D. L. Rousseau and P. F. Williams, J. Chem. Phys. 64, 3519 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    D. L. Rousseau, J. M. Friedman, and P. F. Williams, Top. Curr. Phys. 11, 203 (1979).CrossRefGoogle Scholar
  12. 12.
    Y. B. Band and B. M. Aizenbud, Chem. Phys. Lett. 77, 49 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    J. S. Melinger and A. C. Albrecht, J. Chem. Phys. 84, 1247 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    D. Kirillov, L. K. Lam, and R. W. Hellwarth, J. Mol. Spectrosc. 91, 269 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    S. Banerjee, S. S. Bhattacharyya, and S. Saha, J. Raman Spectrosc. 22, 663 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    C. F. Shaw, J. Chem. Educ. 58, 343 (1981).CrossRefGoogle Scholar
  17. 17.
    D. P. Shelton, J. Chem. Phys. 93, 1491 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    A. Ron and A. Ron, Chem. Phys. Lett. 58, 329 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    M. Mingardi and W. Siebrand, J. Chem. Phys. 62, 1074 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    P. L. Knight, J. Phys. B: At., Mol. Opt. Phys. 13, 4551 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    S. D. Silverstein and R. L. St. Peters, Phys. Rev. A 9, 2720 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    P. F. Williams, D. L. Rousseau, and S. H. Dworetsky, Phys. Rev. Lett. 32, 196 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    W. Holzer, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys. 52, 399 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    M. Shapiro, J. Chem. Phys. 99, 2453 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    M. Ganz, W. Kiefer, E. Kolba, J. Manz, and P. Vogt, Chem. Phys. 164, 99 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    P. F. Williams and D. L. Rousseau, Phys. Rev. Lett. 30, 951 (1973).ADSCrossRefGoogle Scholar
  27. 27.
    S. Gerstenkorn and P. Luc, J. Phys. 46, 867 (1985).CrossRefGoogle Scholar
  28. 28.
    F. Martin, R. Bacis, S. Churassy, and J. Verges, J. Mol. Spectrosc. 116, 71 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    R. F. Barrow and K. K. Yee, J. Chem. Soc. Faraday Trans. II 69, 684 (1973).CrossRefGoogle Scholar
  30. 30.
    M. E. Akopyan, V. V. Baturo, S. S. Lukashov, S. A. Poretsky, and A. M. Pravilov, J. Chem. Phys. 136, 234302 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    M. E. Akopyan, V. V. Baturo, S. S. Lukashov, L. D. Mikheev, S. A. Poretsky, A. M. Pravilov, and O. S. Vasyutinskii, J. Phys. B: At., Mol. Opt. Phys. 48, 025102 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    M. E. Akopyan, V. V. Baturo, S. S. Lukashov, S. A. Poretsky, and A. M. Pravilov, J. Phys. B: At., Mol. Opt. Phys. 46, 055101 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    M. E. Akopyan, V. V. Baturo, S. S. Lukashov, S. A. Poretsky, and A. M. Pravilov, Chem. Phys. 462, 3 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    M. E. Akopyan, V. V. Baturo, S. S. Lukashov, L. D. Mikheev, S. A. Poretsky, A. M. Pravilov, and O. S. Vasyutinskii, Chem. Phys. Lett. 638, 244 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    H. Knockel, H. Richter, M. Siese, and E. Tiemann, Mol. Phys. 68, 917 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Baturo
    • 1
  • I. N. Cherepanov
    • 1
  • S. S. Lukashov
    • 1
  • A. N. Petrov
    • 1
    • 2
  • S. A. Poretsky
    • 1
  • A. M. Pravilov
    • 1
    Email author
  1. 1.Department of PhysicsSt. Petersburg UniversitySt. PetersburgRussia
  2. 2.Russian Research Centre Kurchatov InstituteGatchina, Leningrad oblastRussia

Personalised recommendations