Optics and Spectroscopy

, Volume 121, Issue 6, pp 837–841 | Cite as

An anomalous change in the frequency of plasmon resonances of island metal films upon their contact with some polar organic media

  • L. P. Amosova
  • N. B. Leonov
  • N. A. Toropov
Condensed-Matter Spectroscopy


We have examined the changes in the extinction of island metal films that occur as a result of their contact with a liquid crystal or polymethylmethacrylate. The morphology of surface nanostructures has been investigated. We have revealed that, upon immersion of an island metal film into a liquid medium molecules of which are polar, the shift of the plasmon resonance in the extinction spectrum and the increase in the extinction at the frequency of this resonance can substantially differ from the shift and the extinction increase theoretically calculated for an isotropic surrounding substance. We have shown that the reason for these differences is the local anisotropy of the refractive index of the medium in the immediate vicinity of metal particles, which is determined both by the shape of particles and by the degree of occupation of the substrate surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003). doi 10.1021/jp026731yCrossRefGoogle Scholar
  2. 2.
    N. B. Leonov, I. A. Gladskikh, V. A. Polishchuk, and T. A. Vartanyan, Opt. Spectrosc. 119, 458 (2015). doi 10.1134/S0030400X15090179ADSCrossRefGoogle Scholar
  3. 3.
    P. V. Gladskikh, I. A. Gladskikh, N. A. Toropov, M. A. Baranov, and T. A. Vartanyan, J. Nanopart. Res. 17, 424 (2015). doi 10.1007/s11051-015-3236-6CrossRefGoogle Scholar
  4. 4.
    P. A. Kossayev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, Nano Lett. 5, 1978 (2005). doi 10.1021/nl0513535ADSCrossRefGoogle Scholar
  5. 5.
    S. Y. Park and D. Stroud, Phys. Rev. Lett. 94, 217401 (2005). doi 10.1103/PhysRevLett.94.217401ADSCrossRefGoogle Scholar
  6. 6.
    K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, Appl. Phys. Lett. 89, 103107 (2006). doi 10.1063/1.2335812ADSCrossRefGoogle Scholar
  7. 7.
    W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008). doi 10.1021/nl072613gADSCrossRefGoogle Scholar
  8. 8.
    P. Mandal, P. Gupta, A. Nandi, and S. A. Ramakrishna, J. Nanophoton. 6, 063527 (2012). doi 10.1117/ 1.JNP.6.063527ADSCrossRefGoogle Scholar
  9. 9.
    O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Nano Lett. 2, 1449 (2002). doi 10.1021/nl025819kADSCrossRefGoogle Scholar
  10. 10.
    S. A. Konnova, A. A. Danilushkina, G. I. Fakhrullina, F. S. Akhatova, A. R. Badrutdinova, and R. F. Fakhrullin, RSC Adv. 5, 13530 (2015). doi 10.1039/C4RA15857ACrossRefGoogle Scholar
  11. 11.
    L. Zang, J. Qiu, C. Yang, and E. Sakai, Sci. Rep. 6, 20470 (2016). doi 10.1038/srep20470ADSCrossRefGoogle Scholar
  12. 12.
    T. Atay, J.-H. Song, and A. V. Nurmikko, Nano Lett. 4, 1627 (2004). doi 10.1021/nl049215nADSCrossRefGoogle Scholar
  13. 13.
    W. R. Liou, C.-Y. Chen, J.-J. Ho, C.-K. Hsu, C.-C. Chang, R. Y. Hsiao, and S.-H. Chang, Displays 27 (9.2), 69 (2006). doi 10.1016/j.displa.2005.11.001CrossRefGoogle Scholar
  14. 14.
    L. P. Amosova, P. S. Parfenov, and M. V. Isaev, J. Opt. Technol. 81, 686 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations