Optics and Spectroscopy

, Volume 121, Issue 6, pp 826–830 | Cite as

The influence of silver ion exchange on the formation and luminescent properties of lead sulfide molecular clusters and quantum dots

  • A. N. Abdrshin
  • Zh. O. Lipatova
  • E. V. Kolobkova
  • E. M. Sgibnev
  • N. V. Nikonorov
Condensed-Matter Spectroscopy


PbS molecular clusters and quantum dots are formed by heat treatment in fluorophosphate glasses of the Na2O3–Р2O5–Ga2O3–AlF3–ZnO(S)–PbF2 system with different lead concentrations. PbS molecular clusters are characterized by optical absorption in the range of 300–800 nm and low quantum yields, which decrease from 8.9 to 2.7% with a semiconductor component concentration. It is shown that the parameters of formation of quantum dots luminescing in the wavelength range of 1000–1500 nm are considerably different at different semiconductor component concentrations. The influence of silver ion exchange on the formation of PbS nanoparticles is studied. Introduction of silver stimulates the growth of molecular clusters, which is seen in the absorption spectra. A possible mechanism of interaction of silver nanoparticles with PbS quantum dots is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. W. Wise, Acc. Chem. Res. 33, 7731 (2000). doi 10.1021/ar970220qCrossRefGoogle Scholar
  2. 2.
    T. Okuno, A. A. Lipovskii, T. Ogawa, I. Amagai, and Y. Masumoto, J. Luminesc. 87–89, 491 (2000). doi 10.1016/S0022-2313(99)00220-3CrossRefGoogle Scholar
  3. 3.
    E. H. Sargent, Adv. Mater. 17, 515 (2005). doi 10.1002/adma.200401552CrossRefGoogle Scholar
  4. 4.
    A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, J. Appl. Phys. 103, 81301 (2008). doi 10.1063/ 1.2905320CrossRefGoogle Scholar
  5. 5.
    J. Heo and C. Liu, J. Mater. Sci. Mater. Electron. 18, 135 (2007). doi 10.1007/s10854-007-9172-1CrossRefGoogle Scholar
  6. 6.
    N. F. Borrelli and D. W. Smith, J. Non-Cryst. Solids 180, 25 (1994). doi 10.1016/0022-3093(94)90393-XADSCrossRefGoogle Scholar
  7. 7.
    R. E. de Lamaestre, J. Majimel, F. Jomard, and H. Bernas, J. Phys. Chem. B 109, 19148 (2005). doi 10.1021/jp0527047CrossRefGoogle Scholar
  8. 8.
    C. Liu, Y. K. Kwon, J. Heo, B. H. Kim, and I. Sohn, J. Am. Ceram. Soc. 93, 1221 (2010). doi 10.1111/j.1551-2916.2009.03520.xGoogle Scholar
  9. 9.
    S. D. Stookey, Ind. Eng. Chem. 51, 805 (1959). doi 10.1021/ie50595a022CrossRefGoogle Scholar
  10. 10.
    R. S. Silver, P. S. Morais, A. M. Alcalde, A. F. G. Monte, F. Qu, and N. O. Dantas, J. Non-Cryst. Solids 352, 3522 (2006). doi 10.1016/j.jnoncrysol.2006.03.114ADSCrossRefGoogle Scholar
  11. 11.
    N. O. Dantas, F. Qu, A. F. G. Monte, R. S. Silver, and P. S. Morais, J. Non-Cryst. Solids 352, 3525 (2006). doi 10.1016/j.jnoncrysol.2006.03.085ADSCrossRefGoogle Scholar
  12. 12.
    K. Xu and J. Heo, J. Non-Cryst. Solids 358, 921 (2012). doi 10.1016/j.jnoncrysol.2012.01.007ADSCrossRefGoogle Scholar
  13. 13.
    K. Xu, C. Liu, S. Dai, X. Shen, X. Wang, and J. Heo, J. Non-Cryst. Solids 357, 2428 (2011). doi 10.1016/j.jnoncrysol.2010.11.091ADSCrossRefGoogle Scholar
  14. 14.
    J. L. Machol, F. W. Wise, R. Patel, and D. B. Tanner, Phys. A 207, 427 (1994). doi 10.1016/0378-4371(94)90405-7CrossRefGoogle Scholar
  15. 15.
    G. Allan and C. Delerue, Phys. Rev. B 70, 245321 (2004). doi 10.1103/PhysRevB.70.245321ADSCrossRefGoogle Scholar
  16. 16.
    G. Hota, S. Jain, and K. C. Khilar, Colloids Surf. A: Physiochem. Eng. Asp. 232, 119 (2004). doi 10.1016/j.colsurfa.2003.10.021CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. N. Abdrshin
    • 1
  • Zh. O. Lipatova
    • 1
  • E. V. Kolobkova
    • 1
  • E. M. Sgibnev
    • 1
  • N. V. Nikonorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations