Optics and Spectroscopy

, Volume 121, Issue 5, pp 701–709 | Cite as

Phonon and electronic properties of the LiCaAlF6 crystal: Experiment and ab initio calculations

  • S. A. Klimin
  • B. N. MavrinEmail author
  • N. N. Novikova
Condensed-Matter Spectroscopy


We have studied the IR polarized reflection spectra of LiCaAlF6 crystal in the range of 50–2000 cm–1 and have obtained parameters of dipole phonons. In order to calculate the electronic and vibrational properties of the crystal, we have applied the density functional method with the basis sets of Gaussian functions and plane waves. We have shown that the structure of electronic bands has a direct energy gap. The projected densities of electronic states of atoms, the Born effective charges, and the Mulliken populations have been found to be consistent with the ionic–covalent character of cation–fluorine interatomic bonds. The dielectric properties in high and low-frequency limits have been calculated. We have examined the longitudinal–transverse splitting of dipole modes and have revealed a phonon with an inverted splitting. The theoretical IR reflection and Raman spectra have been found to agree well with experiment. Based on the analysis of the dispersion of phonons in the Brillouin zone, we have revealed an effect of the “quasi-doubling” of the crystal cell along the z axis due to the competing interactions of atoms with nearest and next neighbors. We have found that phonons with frequencies higher than 500 cm–1 are separated by an energy gap and have predominantly stretching character of vibrations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kirm, M. True, S. Vielhauer, G. Zimmerer, N. V. Shiran, I. Shpinkov, D. Spassky, K. Shimamura, and N. Ichinose, Nucl. Instrum. Methods Phys. Res. A 537, 291 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Pustovarov, I. N. Ogorodnikov, S. I. Omelkov, D. A. Spassky, and L. I. Isaenko, J. Opt. Soc. Am. B 31, 1926 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    S. A. Payne, L. Chase, and G. Wilke, J. Lumin. 44, 167 (1989).CrossRefGoogle Scholar
  4. 4.
    L. K. Smith, S. A. Payne, W. L. Kway, and L. L. Chase, IEEE J. Quantum Electron. 28, 2612 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    J. F. Dolan, L. A. Kappers, and R. H. Bartram, Phys. Rev. B 33, 7339 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    U. Hommerich and K. L. Bray, Phys. Rev. B 51, 12133 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    A. Kaminska, A. Suchoki, L. Arizmandi, D. Callejo, F. Jaque, and M. Grinberg, Phys. Rev. B 62, 10802 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    N. B. Bolotina, B. A. Maximov, V. I. Simonov, S. I. Derzhavin, T. V. Uvarova, and V. V. Apollonov, Crystallogr. Rep. 38, 446 (1993).ADSGoogle Scholar
  9. 9.
    P. Daniel, J. Y. Gesland, and M. Rousseau, J. Raman Spectrosc. 23, 197 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    V. N. Makhov, M. Kirm, G. Stryganyuk, S. Vielhauer, G. Zimmerer, B. Z. Malkin, O. V. Solovyev, and S. L. Korableva, J. Lumin. 132, 418 (2012).CrossRefGoogle Scholar
  11. 11.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005). Scholar
  12. 12.
    R. Dovesi, R. Orlando, A. Erba, M. C. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. de la Pierre, P. D’Arco, Y. Noel, M. Causa, M. Rerat, and B. Kirtman, Int. J. Quant. Chem. 114, 1287 (2014). Scholar
  13. 13.
    M. Merano, P. Labeguirie, P. Ugliengo, K. Doll, and R. Dovesi, Chem. Phys. Lett. 387, 453 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    T. Bredow, M. F. Peintinger, and D. V. Oliveira, J. Comput. Chem. 34, 457 (2013).Google Scholar
  15. 15.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    www.quantum-espresso.orgGoogle Scholar
  17. 17.
    J. P. Perdue and Y. Wang, Phys. Rev. B 45, 13244 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    D. Fausti, A. Nugroho, P. van Loosdrecht, S. A. Klimin, M. N. Popova, and L. N. Bezmaternykh, Phys. Rev. B 74, 024403 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    T. Kurosava, J. Phys. Soc. Jpn. 16, 1298 (1961).ADSCrossRefGoogle Scholar
  20. 20.
    F. Gervais and B. Piriou, Phys. Rev. B 11, 3944 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    S. Kuze, D. du Boulay, N. Ishizawa, N. Kodama, M. Yamaga, and M. Henderson, J. Solid State Chem. 177, 3505 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    A. C. Cefalas, E. Sarantopoulou, Z. Kollia, R. Yu. Abdulsabirov, S. L. Korableva, A. K. Naumov, V. V. Semashko, S. Kobe, and P. J. McGuiness, Proc. SPIE–Int. Soc. Opt. Eng. 4766, 171 (2002).ADSGoogle Scholar
  23. 23.
    J. F. Scott and S. P. S. Porto, Phys. Rev. 161, 903 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    F. Gervais, Opt. Commun. 22, 116 (1977).ADSCrossRefGoogle Scholar
  25. 25.
    E. A. Vinogradov, B. N. Mavrin, N. N. Novikova, and V. A. Yakovlev, Phys. Usp. 52, 290 (2009).ADSGoogle Scholar
  26. 26.
    S. A. Klimin, A. B. Kuzmenko, M. A. Kashchenk, and M. N. Popova, Phys. Rev. B 93, 054304 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    T. A. Ivanova and B. N. Mavrin, Opt. Spektrosk. 119, 89 (2015).CrossRefGoogle Scholar
  28. 28.
    M. Ferrero, M. Rerat, M. Kirtman, and R. Dovesi, J. Chem. Phys. 129, 244110 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    F. Gervais and B. Piriou, Phys. Rev. B 10, 1642 (1974).ADSCrossRefGoogle Scholar
  30. 30.
    F. Pascale, C. M. Zikovich-Wilson, G. F. Lopez, B. Civalleri, R. Orlando, and R. Dovesi, J. Comput. Chem. 25, 888 (2004).CrossRefGoogle Scholar
  31. 31.
    R. Blinc and B. Zekz, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974).Google Scholar
  32. 32.
    T. Janssen, in Incommensurate Phases in Dielectrics. Fundamental, Ed. by R. Blinc and A. P. Levanuk (North-Holland, Amsterdam, 1986), Pt. 1, Chap. 3, p.402.Google Scholar
  33. 33.
    R. Currat and T. Jansen, Solid State Phys. 41, 201 (1988).Google Scholar
  34. 34.
    T. A. Ivanova and B. N. Mavrin, Opt. Spectrosc. 117, 228 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, Laser Phys. 3, 216 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute for SpectroscopyRussian Academy of Sciences, TroitskMoscowRussia

Personalised recommendations