Optics and Spectroscopy

, Volume 121, Issue 5, pp 677–688 | Cite as

Peculiarities of the SEHRS spectrum of 4,4′-bipyridine molecule

  • A. V. Golovin
  • A. M. Polubotko
  • V. P. Chelibanov
Condensed-Matter Spectroscopy

Abstract

The SEHRS spectrum of 4,4′-bipyridine is analyzed on the base of the Dipole-Quadrupole theory. It is demonstrated that there appear strong lines caused by vibrations transforming after the unit irreducible representation of the D 2 symmetry group, which is most probably describes the symmetry properties of the molecule. These lines are nearly forbidden for the molecule, adsorbed on rough metal surfaces. Appearance of these lines is associated with a strong quadrupole light–molecule interaction, which exists in this system. In addition, there are lines caused by contributions from both the vibrations transforming after the unit irreducible representation A and the representation B 1, which describes transformational properties of the d z component of the dipole moment, which is perpendicular to the surface. This result is associated with the specific geometry of the molecule, when the indicated vibrations can be nearly degenerate and cannot be resolved by the SEHRS spectra analysis. Analysis of the SEHRS spectra for the possible geometry of the molecule with the D 2h symmetry group leads to similar results. This issue is in a full coincidence with the results of the SEHRS Dipole-Quadrupole theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Polubotko, The Dipole Quadrupole Theory of Surface Enhanced Raman Scattering (Nova Science, New York, 2009).Google Scholar
  2. 2.
    W.-H. Li, X.-Y. Li, and N.-T. Yu, Chem. Phys. Lett. 327, 153 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    W.-H. Li, X.-Y. Li, and N.-T. Yu, Chem. Phys. Lett. 305, 303 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    X.-Y. Li, Q.-J. Huang, V. Petrov, Y.-T. Xie, Q. Luo, X. Yu, and Y.-J. Yan, J. Raman Spectrosc. 36, 555 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Polubotko, Opt. Spectrosc. 109, 510 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. M. Polubotko and V. P. Smirnov, J. Raman Spectrosc. 43, 380 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A. M. Polubotko and V. P. Chelibanov, Opt. Spectrosc. 120, 86 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    S. Nie, L. A. Lipscomb, and N.-T. Yu, Appl. Spectrosc. Rev. 26, 203 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Zhuang, J. Cheng, X. Wang, B. Zhao, X. Han, and Y. Luo, Spectrochim. Acta, Part A 67, 509 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E.01 (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
  11. 11.
    I. Pockrand, Springer Tracts Mod. Phys. 104 (1984).Google Scholar
  12. 12.
    S.-W. Joo, Spectrosc. Lett. 39, 85 (2006).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S.-W. Joo, Vibrat. Spectrosc. 34, 269 (2004).CrossRefGoogle Scholar
  14. 14.
    R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan, New York, 1971; Mir, Moscow, 1974).MATHGoogle Scholar
  15. 15.
    A. M. Polubotko, PhTI Preprint No. 1151 (Phys. Tech. Inst., Leningrad, 1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Golovin
    • 1
  • A. M. Polubotko
    • 2
  • V. P. Chelibanov
    • 3
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.A.F. Ioffe Physico-Technical InstituteSt. PetersburgRussia
  3. 3.State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations