Optics and Spectroscopy

, Volume 121, Issue 5, pp 665–676 | Cite as

Features of electro-optical characteristics of composite liquid crystal media (a review)

  • L. P. Amosova
  • V. Yu. Venediktov
Condensed-Matter Spectroscopy


Main patterns of structure formation of composite liquid crystal (LC) media and their classification according to the percentage content of liquid crystal and polymer are considered. Their properties are compared with the properties of homogeneous LC layers and the opportunities of their practical use in optical modulators are discussed. It is shown that, at small (10 wt %) monomer concentrations in the composite, its polymerization leads to formation of a thin-wall network which separates the liquid crystal into domains and provides an uniform orientation in the bulk. The polymer network increases the elasticity of the layer and decreases the relaxation time, but the devices usually work in polarized light and use the same principle as the devices filled with pure LC; i.e. the phase of the light or its polarization changes due to a change in the effective refraction index. However, the division of the LC volume into relatively autonomous domains also allows one to create a polarization-independent device based on the scattering effect. By increasing the relative content of the monomer, it is possible to ensure formation of a porous polymer matrix with inclusions of isolated from each other LC droplets. Such polymer-dispersed LC in its initial state either scatter the light of any polarization and becomes transparent state when an electric field is applied, or, with the use of special methods, the switch-off and switch-on states are swapped (“reverse mode” devices). The main advantages of the composite media are independence of polarization, mechanical strength, and small relaxation times, while the main disadvantages are increased power consumption, high polarization-independent optical losses, and significantly lower contrast. Possible ways to increase the contrast are described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. G. Graighead, J. Cheng, and S. Hackwood, Appl. Phys. Lett. 40, 22 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    J. L. West, J. W. Doane, and S. Zumer, US Patent No. 4685771 (1987).Google Scholar
  3. 3.
    G. P. Crawford and J. W. Doane, Condens. Matter News 1 (6), 5 (1992).Google Scholar
  4. 4.
    J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, Mol. Cryst. Liq. Cryst. 165, 511 (1988).Google Scholar
  5. 5.
    B.-G. Wu, J. L. West, and J. W. Doane, J. Appl. Phys. 62, 3925 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    B.-G. Wu and J. W. Doane, US Patent No. 4671618 (1987).Google Scholar
  7. 7.
    J. L. West, A. Golemme, and J. W. Doane, US Patent No. 4673255 (1987).Google Scholar
  8. 8.
    J. L. Fergason, SID Int. Symp. Digest 16, 6870 (1985).Google Scholar
  9. 9.
    J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    P. S. Drzaic, Mol. Cryst. Liq. Cryst. 154, 289 (1988).Google Scholar
  11. 11.
    A. B. Koval’chuk, M. B. Kurik, and O. D. Lavrentovich, Zarub. Elektron., No. 5, 44 (1989).Google Scholar
  12. 12.
    A. B. Koval’chuk, M. B. Kurik, O. D. Lavrentovich, and V. V. Sergan, Sov. Phys. JETP 67, 416 (1988).Google Scholar
  13. 13.
    O. D. Lavrentovich, Liq. Cryst. 24, 117 (1998).CrossRefGoogle Scholar
  14. 14.
    E. V. Generalova, A. C. Sonin, and I. N. Shibaev, Vysokomol. Soedin., Ser. B 25, 744 (1983).Google Scholar
  15. 15.
    G. M. Zharkova and A. S. Sonin, Liquid Crystal Composites (Nauka, Novosibirsk, 1994) [in Russian].Google Scholar
  16. 16.
    A. S. Sonin and I. N. Shibaev, Zh. Fiz. Khim. 55, 1263 (1981).Google Scholar
  17. 17.
    J. L. West, J. W. Doane, and S. Zumer, US Patent No. 4685771 (1987).Google Scholar
  18. 18.
    J. D. Margerum, A. M. Lackner, E. Ramos, K.-C. Lim, and W. H. Smith, Liq. Cryst. 5, 1477 (1989).CrossRefGoogle Scholar
  19. 19.
    R. A. M. Hikmet, Liq. Cryst. 9, 405 (1991).CrossRefGoogle Scholar
  20. 20.
    R. A. M. Hikmet and B. H. Zwerver, Liq. Cryst. 12, 319 (1992).CrossRefGoogle Scholar
  21. 21.
    Y. H. Lin, H. Ren, and S. T. Wu, Appl. Phys. Lett. 84, 4083 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    K. Amundson, A. van Blaaderen, and P. Wiltzius, Phys. Rev. E 55, 1646 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    F. Roussel and J. M. Buisine, Phys. Rev. E 62, 2310 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    M. Wang, W. Li, Y. Zou, and C. Pan, J. Appl. Phys. 30, 1815 (1997).Google Scholar
  25. 25.
    R. A. M. Hikmet and R. Howard, Phys. Rev. E 48, 2752 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    R. A. M. Hikmet and H. M. J. Boots, Phys. Rev. E 51, 5824 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    A. Jakly, D. R. Kim, L.-C. Chien, and A. Saupe, J. Appl. Phys. 72, 3161 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    A. Jakly, L. Bata, K. Fodor-Csorba, L. Rosta, and L. Noirez, Liq. Cryst. 17, 227 (1994).CrossRefGoogle Scholar
  29. 29.
    A. Jakly, L. Rosta, and L. Noirez, Liq. Cryst. 18, 601 (1995).CrossRefGoogle Scholar
  30. 30.
    O. A. Afonin and V. F. Nazvanov, Tech. Phys. Lett. 24, 451 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    Tien-Jung Chen, Yu-Fan Chen, Chia-Hsing Sun, and Jin-Jei Wu, J. Polym. Res. 13, 85 (2006).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R. A. M. Hikmet, J. Appl. Phys. 68, 4406 (1990).ADSCrossRefGoogle Scholar
  33. 33.
    Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, Opt. Express 12, 1221 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, Jpn. J. Appl. Phys. 43, 7083 (2004).ADSCrossRefGoogle Scholar
  35. 35.
    F. Du, S. Gauza, and S. T. Wu, Opt. Express 11, 2891 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    D.-K. Yang, L.-C. Chien, and J. W. Doane, Appl. Phys. Lett. 60, 3102 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 84, 1233 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    A. V. Kaznacheev, I. Yu. Smirnova, A. S. Sonin, and N. A. Churochkina, Polymer Sci., Ser. A 55, 153 (2013).CrossRefGoogle Scholar
  39. 39.
    L. M. Blinov, Liquid Crystals: Structure and Properties (Librokom, Moscow, 2013) [in Russian].Google Scholar
  40. 40.
    A. Y.-H. Wu, Y.-H. Lin, Y.-Q. Lu, H. Ren, Y.-H. Fan, J. R. Wu, and S.-T. Wu, Opt. Express 12, 6382 (2000).ADSCrossRefGoogle Scholar
  41. 41.
    O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, Liq. Cryst. 15, 395 (1993).CrossRefGoogle Scholar
  42. 42.
    I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, Soc. Inform. Display. Tech. Digest 33, 834 (2002).Google Scholar
  43. 43.
    P. Sixou, C. Gautier, and H. Villanova, Mol. Cryst. Liq. Cryst. 364, 679 (2001).CrossRefGoogle Scholar
  44. 44.
    Yun-Hsing Fan, Hongwen Ren, Xiao Liang, Yi-Hsin Lin, and Shin-Tson Wua, Appl. Phys. Lett. 85, 2451 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    Yi-Hsin Lin, Hongwen Ren, Sebastian Gauza, Yung-Hsun Wu, Ying Zhou, and Shin-Tson Wu, Mol. Cryst. Liq. Cryst. 453, 371 (2006).CrossRefGoogle Scholar
  46. 46.
    Yi-Hsin Lin and Jhih-Ming Yang, Proc. SPIE 6911, 691108-1 (2014).Google Scholar
  47. 47.
    E. A. Konshina and L. P. Amosova, Tech. Phys. Lett. 38, 642 (2012).ADSCrossRefGoogle Scholar
  48. 48.
    Yi-Hsin Lin, Hongwen Ren, and Shin-Tson Wu, Appl. Phys. Lett. 84, 4083 (2006).ADSCrossRefGoogle Scholar
  49. 49.
    Hongwen Ren and Shin-Tson Wua, J. Appl. Phys. 92, 797 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    P. K. Karahaliou, A. G. Vanakaras, and D. J. Photinos, J. Chem. Phys. 131, 124516 (2009).ADSCrossRefGoogle Scholar
  51. 51.
    S. Sarman and A. Laaksonen, Phys. Chem. Chem. Phys. 14, 11999 (2012).CrossRefGoogle Scholar
  52. 52.
    Hyung Guen Yoon, Sh.-W. Kang, M. Lehmann, J. O. Park, M. Srinivasaraode, and S. Kumar, Soft Matter 7, 8770 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State Electrotechnical University LETISt. PetersburgRussia
  3. 3.Physical FacultySt. Petersburg State UniversityPeterhof, St. PetersburgRussia

Personalised recommendations