Optics and Spectroscopy

, Volume 121, Issue 4, pp 482–486 | Cite as

Radiolysis of LaF3 crystals with rare-earth impurities

  • E. A. Radzhabov
XVI International Feofilov Symposium


The absorption spectra of LaF3 crystals, both pure and doped with rare-earth fluorides (YF3, CeF3, NdF3, PrF3, SmF3, EuF3, GdF3, TbF3, DyF3, HoF3, ErF3, TmF3, YbF3, and LuF3) have been investigated. All these impurities can be separated into two groups with respect to the shape of the absorption spectra of irradiated crystals. The spectra of the crystals doped with Nd, Sm, Tm, and Yb exhibit, along with 200-nm hole band F 3 - , weak bands due to RE2+-anion vacancy centers. The spectra of LaF3 crystals with Y, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu impurities exhibit, along with the hole-center bands (F 3 - at 200 nm and VkA at 320 nm), bands of comparable intensity, which can be attributed to RE3+F centers. This conclusion is confirmed by preliminary quantum-chemical calculations and the estimation of the levels location in the energy-band diagram.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, J. Chem. Phys. 90, 3443 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, 1968).Google Scholar
  3. 3.
    E. A. Radzhabov and V. A. Kozlovskii, Bull. Russ. Acad. Sci.: Phys. 79, 251 (2015).CrossRefGoogle Scholar
  4. 4.
    E. A. Radzhabov and A. I. Nepomnyashikh, in Proceedings of the International Conference on Inorganic Scintillators and Their Applications SCINT 95, Delft, The Netherlands, August 28–September 1, 1995, p. 189; arxiv:1510.07781.Google Scholar
  5. 5.
    E. D. Thoma, H. Shields, Y. Zhang, B. C. McCollum, and R. T. Williams, J. Lumin. 71, 93 (1997).CrossRefGoogle Scholar
  6. 6.
    E. A. Radzhabov, Opt. Spectrosc. 120, 294 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Vasil’chenko, Yu. A. Krechko, Yu. D. Motin, and B. P. Sobolev, Nucl. Instrum. Methods Phys. Res. B 122, 63 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    L. R. Elias, W. S. Heaps, and W. M. Yen, Phys. Rev. B 8, 4989 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    M. J. Frisch, G. W. Trucks, and H. B. Schlegel, Gaussian 03, Revision E.1 (Gaussian Inc., Pittsburgh, PA, 2007).Google Scholar
  10. 10.
    K. Schlyter, ARKIV FOR KEMI 5, 73 (1953).Google Scholar
  11. 11.
    P. V. Figura, A. I. Nepomnyashikh, and E. A. Radzhabov, Opt. Spectrosc. 67, 1304 (1989).Google Scholar
  12. 12.
    E. A. Radzhabov and R. Shendrik, Rad. Meas. 90, 80 (2016). doi 10.1016/j.radmeas.2016.02.012CrossRefGoogle Scholar
  13. 13.
    Physics of Color Centers, Ed. by W. B. Fowler (Academic, New York, 1968).Google Scholar
  14. 14.
    P. Dorenbos, J. Lumin. 135, 93 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk State UniversityIrkutskRussia

Personalised recommendations