Optics and Spectroscopy

, Volume 121, Issue 4, pp 585–591 | Cite as

Specific features of luminescence quenching in a nematic liquid crystal doped with nanoparticles

  • M. A. Kurochkina
  • E. A. Konshina
  • D. P. Shcherbinin
Condensed-Matter Spectroscopy

Abstract

The change in the intensity of the photoluminescence (PL) spectra of nematic liquid crystal (NLC) composites as a function of the concentration of CdSe/ZnS semiconductor quantum dots (QDs) and TiO2 and ZrO2 nanoparticles ~5 nm in diameter has been investigated. It is shown that the PL-quenching intensity in composites with CdSe/ZnS QDs exceeds that in composites with TiO2 and ZrO2 nanoparticles. The lowfrequency spectra of these composites with a concentration of 0.1 wt %, recorded in the range of 102–103 Hz, and the content of mobile ions in them have been investigated. It is found that the dielectric loss in the composite with CdSe/ZnS QDs is much higher and the content of mobile ions is larger by a factor of 3 than in the composites with TiO2 and ZrO2 nanoparticles. It is shown that an increase in the CdSe/ZnS QD concentration in NLC composites leads to an increase in the dielectric loss and a decrease in the PL intensity. Possible mechanisms of the interaction between NLC molecules and CdSe/ZnS QDs are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Kinkead and T. Hegmann, J. Mater. Chem. 20, 448 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Mirzaei, M. Urbanski, K. Yu, H.-S. Kitzerow, and T. Hegmann, J. Mater. Chem. 21, 12710 (2011).CrossRefGoogle Scholar
  3. 3.
    E. A. Konshina, I. F. Galin, D. P. Shcherbinin, and E. O. Gavrish, Liq. Cryst. 41, 1229 (2014).CrossRefGoogle Scholar
  4. 4.
    T. Joshi, P. Ganguly, D. Haranath, S. Singh, and A. M. Biradar, Mater. Lett. 114, 156 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Kumar, J. Prakash, A. D. Deshmukh, D. Haranath, P. Silotia, and A. M. Biradar, Appl. Phys. Lett. 100, 134101 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    J. S. Roy, T. P. Majumder, and R. J. Dabrowski, Mol. Struct. 1098, 351 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Kurochkina, D. P. Shcherbinin, and E. A. Konshina, Opt. Spectrosc. 119, 812 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    O. Xu, Y. Zhang, B. Bo Tang, and C.-Y. Zhang, Anal. Chem. 88, 2051 (2016).CrossRefGoogle Scholar
  9. 9.
    A. K. Visheratina, I. V. Alisova, E. V. Kundelev, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, Opt. Spectrosc. 119, 733 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    K. I. Annas, Ya. A. Gromova, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, J. Opt. Technol. 81, 439 (2014).CrossRefGoogle Scholar
  11. 11.
    V. V. Danilov, A. S. Panfutova, V. B. Shilov, I. M. Belousova, G. M. Ermolaeva, A. I. Khrebtov, and D. A. Videnichev, Russ. J. Phys. Chem. B 9, 561 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Dayneko, P. Linkov, I. Martynov, A. Tameev, M. Tedoradze, P. Samokhvalov, I. Nabiev, and A. Chistyakov, Phys. E: Low-Dim. Syst. Nanostruct. 79, 206 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    K. Zhao, Z. Pan, and X. Zhong, J. Phys. Chem. Lett. 7, 406 (2016).CrossRefGoogle Scholar
  14. 14.
    T. Förster, Ann. Phys. (N.Y.) 437, 55 (1948).ADSCrossRefGoogle Scholar
  15. 15.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 78, 125311 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    C. Curutchet, A. Franceschetti, and D. Scholes, J. Phys. Chem. C 112, 13336 (2008).CrossRefGoogle Scholar
  17. 17.
    A. A. Vashchenko, V. S. Lebedev, A. G. Vitukhnovskii, R. B. Vasiliev, and I. G. Samatov, JETP Lett. 96, 113 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    V. M. Agranovich, Yu. N. Gartstein, and M. Litinskaya, Chem. Rev. 111, 5179 (2011).CrossRefGoogle Scholar
  19. 19.
    D. P. Shcherbinin, E. A. Konshina, and D. E. Solodkov, Tech. Phys. Lett. 41, 781 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Kurochkina and E. A. Konshina, Opt. Spectrosc. 118, 111 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    M. A. Kurachkina, D. P. Shcherbinin, and E. A. Konshina, Proc. SPIE–Int. Soc. Opt. Eng. 9519, 95190Z-3 (2015).Google Scholar
  22. 22.
    V. E. Adrianov, A. O. Orlova, V. G. Maslov, A. V. Baranov, and A. V. Fedorov, NTV SPbGU ITMO 5, 30 (2009).Google Scholar
  23. 23.
    D. P. Shcherbinin, E. A. Konshina, and M. A. Kurochkina, NTV ITMO 15, 849 (2015).Google Scholar
  24. 24.
    E. A. Konshina, D. P. Shcherbinin, E. O. Gavrish, I. F. Galin, and M. A. Kurochkina, Zhidk. Krist. Prakt. Ispol’z. 15, 64 (2015).Google Scholar
  25. 25.
    N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simoes Gamboa, Ann. Phys. (N.Y.) 528, 272 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. A. Kurochkina
    • 1
  • E. A. Konshina
    • 1
  • D. P. Shcherbinin
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations