Optics and Spectroscopy

, Volume 121, Issue 3, pp 379–383 | Cite as

Inorganic phosphors in lead–silicate glass for white LEDs

  • N. V. Nikonorov
  • E. V. Kolobkova
  • V. A. Aseev
  • A. Yu. Bibik
  • Ya. A. Nekrasova
  • Yu. V. Tuzova
  • A. I. Novogran
Condensed-Matter Spectroscopy

Abstract

Luminescent composites of the “phosphor-in-glass” type, based on a highly reflective lead–silicate matrix and fine-grained powders of YAG:Ce3+ and SiAlON:Eu2+ crystals, are developed and synthesized. Phosphor and glass powders are sintered at a temperature of 550°C to obtain phosphor samples for white LEDs. The composites are analyzed by X-ray diffraction and luminescence spectroscopy. The dependence of the light quantum yield on the SiAlON:Eu2+ content in the samples is investigated. A breadboard of a white LED is designed using a phosphor-in-glass composite based on lead–silicate glass with a low glasstransition temperature. The total emission spectra of a blue LED and glass-based composites are measured. The possibility of generating warm white light by choosing an appropriate composition is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sakuma, N. Hirosaki, R.-J. Xie, Y. Yamamoto, and T. Suehiro, Mater. Lett. 61, 547 (2007).CrossRefGoogle Scholar
  2. 2.
    Natural and Artificial Lighting, SNIP 23-05-95 (Minstroi Rossii, Moscow, 1995) [in Russian].Google Scholar
  3. 3.
    http://www.shinetsusilicones.com.Google Scholar
  4. 4.
    S. Tanabe, S. Fujita, A. Sakamoto, and S. Yamamoto, Ceram. Trans. 173, 19 (2006).Google Scholar
  5. 5.
    S. Fujita, A. Sakamoto, and S. Tanabe, IEEE J. Sel. Top. Quantum Electron. 14, 1387 (2008). doi 10.1109/JSTQE.2008.920285CrossRefGoogle Scholar
  6. 6.
    S. Nishiura and S. Tanabe, J. Ceram. Soc. Jpn. 116, 1096 (2008).CrossRefGoogle Scholar
  7. 7.
    C. C. Tsai, W. C. Cheng, J. K. Chang, Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, J. Displ. Technol. 9, 427 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    M. N. Tsvetkova, B. V. Chernovets, G. V. Itkinson, V. G. Korsakov, and M. M. Sychev, J. Opt. Technol. 78, 403 (2011).CrossRefGoogle Scholar
  9. 9.
    C. C. Tsai, C. H. Chung, J. Wang, W. C. Cheng, M. H. Chen, J. S. Liou, J. K. Chang, Y. C. Hsu, S. C. Huang, C. W. Lee, H. L. Hu, S. B. Huang, J. H. Kuang, and W. H. Cheng, in Proceedings of the 60th Electronic Components and Technology Conference ECTC, Las Vegas, NV, USA, June 1–4, 2010, p. 700.Google Scholar
  10. 10.
    C. C. Tsai, J. S. Liou, W. C. Cheng, C. H. Chung, M. H. Chen, J. Wang, and W. H. Cheng, in Proceedings of the 61st Electronic Components and Technology Conference ECTC, Lake Buena Vista, FL, USA, May–June, 2011, p. 1626.Google Scholar
  11. 11.
    Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, Opt. Lett. 37, 3276 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    M.-H. Chang, D. Das, P. V. Varde, and M. Pecht, Mircoelectron. Reliab. 52, 762 (2012).CrossRefGoogle Scholar
  14. 14.
    V. A. Aseev, Yu. V. Tuzova, A. Yu. Bibik, E. V. Kolobkova, Ya. A. Nekrasova, N. V. Nikonorov, M. A. Shvaleva, A. E. Romanov, and V. E. Bugrov, Fiz. Mekh. Mater. 21, 242 (2014).Google Scholar
  15. 15.
    V. A. Aseev, A. Yu. Bibik, E. V. Kolobkova, Ya. A. Nekrasova, N. V. Nikonorov, A. E. Romanov, Yu. V. Tuzova, and M. A. Shvaleva, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt., No. 5 (93), 64 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. V. Nikonorov
    • 1
  • E. V. Kolobkova
    • 1
  • V. A. Aseev
    • 1
  • A. Yu. Bibik
    • 1
  • Ya. A. Nekrasova
    • 1
  • Yu. V. Tuzova
    • 1
  • A. I. Novogran
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations