Optics and Spectroscopy

, Volume 121, Issue 2, pp 263–270 | Cite as

Laser-induced synthesis of metal–carbon materials for implementing surface-enhanced Raman scattering

  • A. Kucherik
  • S. Arakelian
  • T. Vartanyan
  • S. Kutrovskaya
  • A. Osipov
  • A. Povolotskaya
  • A. Povolotskii
  • A. Man’shina
Nonlinear and Quantum Optics

Abstract

Metal–carbon materials exhibiting surface-enhanced Raman scattering have been synthesized by laser irradiation of colloidal systems consisting of carbon and noble metal nanoparticles. The dependence of the Raman scattering intensity on the material composition and laser irradiation conditions has been investigated. The possibility of recording the Raman spectrum of organic dye rhodamine 6G, deposited in amount of 10–6 M on the substrate obtained from a colloidal solution is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Werner, S. Hashimoto, T. Tomita, S. Matsuo, and Y. Makita, Phys. Chem. 112, 16801 (2008). doi 10.1021/jp804647aGoogle Scholar
  2. 2.
    S. Porel, N. Venkatram, Rao D. Narayana, and T. P. Radhakrishnan, J. Nanosci. Nanotechnol, No. 7 (6), 1887 (2007). doi 10.1166/jnn.2007.736CrossRefGoogle Scholar
  3. 3.
    J. F. Li, Y. F. Huang, Y. Ding, S. B. Li, Z. L. Yang, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Nature, No. 18, 352 (2010).Google Scholar
  4. 4.
    A. A. Manshina, E. V. Grachova, A. V. Povolotskiy, A. V. Povolotckaia, Y. V. Petrov, I. O. Koshevoy, A. A. Makarova, D. V. Vyalikh, and S. P. Tunik, Sci. Rep., No. 5, 12027 (2015). doi 10.1038/srep1202ADSCrossRefGoogle Scholar
  5. 5.
    D. A. Zherebtsov, D. M. Galimov, A. V. Lashkul, V. V. D’yachuk, E. Lyakhderanta, G. G. Mikhailov, I. Ojala, and R. Laiho, Inorg. Mater.: Appl. Res., No. 2 (5), 524 (2011). doi 10.1134/S2075113311050303CrossRefGoogle Scholar
  6. 6.
    M. Y. Bashouti, A. Manshina, A. Povolotckaia, A. Povolotskiy, A. Kireev, Y. Petrov, M. Mackovic, E. Spiecker, I. Koshevoy, S. Tunik, and S. Christiansen, Lab on a Chip, No. 15, 1742 (2015). doi 10.1039/c4lc01376jCrossRefGoogle Scholar
  7. 7.
    M. Liu, V. I. Artyukhov, H. Lee, F. Xu, and B. I. Yakobson, ACS Nano, No. 7 (11), 10075 (2013). doi 10.1021/nn404177rCrossRefGoogle Scholar
  8. 8.
    K. Akagi, M. Nishiguchi, H. Shirakawa, Y. Furukawa, and I. Harada, Synth. Met. 17, 557 (1987). doi 10.1016/0379-6779(87)90798-3CrossRefGoogle Scholar
  9. 9.
    V. V. Korshak, V. I. Kasatochkin, A. M. Sladkov, Yu. P. Kudryavtsev, and K. O. Usymbaev, Dokl. Akad. Nauk SSSR 136, 1342 (1961).Google Scholar
  10. 10.
    A. M. Sladkov, Polyconjugated Polymers (Nauka, Moscow, 1989) [in Russian].Google Scholar
  11. 11.
    V. G. Babaev and M. B. Guseva, in Carbyne and Carbynoid Structures, Ed. by R. B. Heimann, S. E. Evsyukov, and L. Kavan (Kluwer Academic, Dordrecht, Boston, London, 1999), p. 159.Google Scholar
  12. 12.
    S. V. Demishev, A. A. Pronin, V. V. Glushkov, N. E. Sluchanko, N. A. Samarin, M. V. Kondrin, A. G. Lyapin, V. V. Brazhkin, G. D. Varfolomeeva, and S. V. Popova, J. Exp. Theor. Phys. 95, 123 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. G. Korobova and D. I. Bazhanov, JETP Lett. 95, 452 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Antipov, S. M. Arakelyan, T. A. Vartanyan, T. E. Itina, S. V. Kutrovskaya, A. O. Kucherik, and I. V. Sapegina, Opt. Spectrosc. 119, 119 (2015). doi 10.1134/S0030400X15070036ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Antipov, S. M. Arakelyan, S. V. Garnov, S. V. Kutrovskaya, A. O. Kucherik, D. S. Nogtev, and A. V. Osipov, Quantum Electron. 45, 731 (2015). doi 10.1070/QE2015v045n08ABEH015681ADSCrossRefGoogle Scholar
  16. 16.
    C. B. Cannella and N. Goldman, J. Phys. Chem. C 119, 21605 (2015). doi 10.1021/acsjpcc.5b03781CrossRefGoogle Scholar
  17. 17.
    N. Jagdish and B. Anagh, APL Mater., No. 3, 100702 (2015). doi 10.1063/1.4932622CrossRefGoogle Scholar
  18. 18.
    B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, and G. Yang, Sci. Adv. 1, e1500857 (2015). doi 10.1126/sciadv.1500857ADSCrossRefGoogle Scholar
  19. 19.
    L. Ravagnan, F. Siviero, C. Lenardi, P. Piseri, E. Barborini, P. Milani, C. S. Casari, A. L. Bassi, and C. E. Bottani, Phys. Rev. Lett. 89, 285506 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    E. I. Asinovskii, A. V. Kirillin, and A. V. Kostanovskii, Phys. Usp. 45, 869 (2002). doi 10.3367/UFNr.0172.200208e.0931ADSCrossRefGoogle Scholar
  21. 21.
    M. Kijima, I. Kinoshita, and H. Shirakawa, J. Mol. Struct. 521, 279 (2000). doi 10.1016/s0022-2860(99)00443-3ADSCrossRefGoogle Scholar
  22. 22.
    L. Ravagnan, N. Manini, E. Cinquanta, G. Onida, D. Sangalli, C. Motta, M. Devetta, A. Bordoni, P. Piseri, and P. Milani, Phys. Rev. Lett. 102, 245502 (2009). doi 10.1103/PhysRevLett.102.245502ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. Kucherik
    • 1
  • S. Arakelian
    • 1
  • T. Vartanyan
    • 2
  • S. Kutrovskaya
    • 1
  • A. Osipov
    • 1
  • A. Povolotskaya
    • 3
  • A. Povolotskii
    • 3
  • A. Man’shina
    • 3
  1. 1.Vladimir State UniversityVladimirRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations