Optics and Spectroscopy

, Volume 120, Issue 6, pp 971–977 | Cite as

Optical laue diffraction on photonic structures designed by laser lithography

  • K. B. Samusev
  • M. V. Rybin
  • S. Yu. Lukashenko
  • M. F. Limonov
Geometrical and Applied Optics


Two-dimensional photonic crystals with square symmetry C 4v were obtained using the laser lithography method. The structure of these samples was studied by scanning electron microscopy. Optical Laue diffraction for monochromatic light was studied experimentally depending on the incidence angle of laser beam and lattice constant. Interpretation of the observed diffraction patterns is given in the framework of the Laue diffraction mechanism for an one-dimensional chain of scattering elements. Red thresholds for different diffraction orders were determined experimentally and theoretically. The results of calculations are in an excellent agreement with experiment.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Guinier, X-Ray Diffraction. In Crystals, Imperfect Crystals, and Amorphous Bodies (W. H. Freeman, San Francisco, 1963).Google Scholar
  2. 2.
    J. M. Cowley, Diffraction Physics (Elsevier, Amsterdam, 1985).Google Scholar
  3. 3.
    R. S. Savelyev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, Opt. Spectrosc. 119, 551 (2015). doi 10.1134/S0030400X15100240ADSCrossRefGoogle Scholar
  4. 4.
    S. Horiuchi, T. Gotou, M. Fujiwara, T. Asaka, T. Yokosawa, and Y. Matsui, Appl. Phys. Lett. 84, 2403 (2004). doi 10.1063/1.1689746ADSCrossRefGoogle Scholar
  5. 5.
    J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446 7131, 60 (2007). doi 10.1038/nature05545ADSCrossRefGoogle Scholar
  6. 6.
    B. Li, S. Yang, N. Huo, Y. Li, J. Yang, R. Li, C. Fan, and F. Lu, RSC Adv. 4, 26407 (2014). doi 10.1039/ c4ra01632gCrossRefGoogle Scholar
  7. 7.
    Y. Gao, Z. Liu, D.-M. Sun, L. Huang, L.-P. Ma, L.-C. Yin, T. Ma, and Z. Zhang, Nature Commun. 6, 8569 (2015). doi 10.1038/ncomms9569ADSCrossRefGoogle Scholar
  8. 8.
    C. Park, K. Koh, and U. Jeong, Sci. Rep. 5, 8340 (2015). doi 10.1038/srep08340ADSCrossRefGoogle Scholar
  9. 9.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, Oxford, 2008).zbMATHGoogle Scholar
  10. 10.
    Optical Properties of Photonic Structures: Interplay of Order and Disorder, Ed. by M. F. Limonov and R. M. de la Rue (CRC, Taylor and Francis Group, Boca Raton, FL, 2012).Google Scholar
  11. 11.
    A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic, San Diego, 1991).Google Scholar
  12. 12.
    B. Brüser, I. Staude, G. von Freymann, M. Wegener, and U. Pietsch, Appl. Opt. 51, 6732 (2012). doi 10.1364/AO.51.006732ADSCrossRefGoogle Scholar
  13. 13.
    K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, Phys. Solid State 57, 2494 (2015). doi 10.1134/S1063783415120306ADSCrossRefGoogle Scholar
  14. 14.
    F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, Phys. Rev. B 71, 195112 (2005). doi 10.1103/PhysRevB.71.195112ADSCrossRefGoogle Scholar
  15. 15.
    A. K. Samusev, K. B. Samusev, M. V. Rybin, M. F. Limonov, E. Yu. Trofimova, D. A. Kurdyukov, and V. G. Golubev, Phys. Solid State 53, 1056 (2011). doi 10.1134/S106378341105026XADSCrossRefGoogle Scholar
  16. 16.
    L. M. Goldenberg, J. Wagner, J. Stumpe, B. R. Paulke, and E. Gornitz, Physica E 17, 433 (2003). doi 10.1016/ S1386-9477(02)00908-6ADSCrossRefGoogle Scholar
  17. 17.
    K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. Shaetzen, and L. Hellemans, J. Chem. Phys. 118, 10752 (2003). doi 10.1063/1.1573173ADSCrossRefGoogle Scholar
  18. 18.
    M. V. Rybin, I. S. Sinev, A. K. Samusev, K. B. Samusev, E. Yu. Trofimova, D. A. Kurdyukov, V. G. Golubev, and M. F. Limonov, Phys. Rev. B 87, 125131 (2013). doi 10.1103/PhysRevB.87.125131ADSCrossRefGoogle Scholar
  19. 19.
    S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001). doi 10.1038/35089130ADSCrossRefGoogle Scholar
  20. 20.
    M. Farsari and B. N. Chichkov, Nature Photon. 3, 450 (2009). doi 10.1038/nphoton.2009.131ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Baryshev, V. A. Kosobukin, K. B. Samusev, D. V. Usvyat, and M. F. Limonov, Phys. Rev. B 73, 205118 (2006). doi 10.1103/PhysRevB.73.205118ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. B. Samusev
    • 1
    • 2
  • M. V. Rybin
    • 1
    • 2
  • S. Yu. Lukashenko
    • 2
    • 3
  • M. F. Limonov
    • 1
    • 2
  1. 1.Ioffe Physical Technical InstituteSt. PetersburgRussia
  2. 2.University ITMOSt. PetersburgRussia
  3. 3.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations