Optics and Spectroscopy

, Volume 120, Issue 4, pp 622–627 | Cite as

Influence of surface properties on the structure of granular silver films and excitation of localized plasmons

  • D. P. Shcherbinin
  • E. A. Konshina
  • V. A. Polischuk
Physical Optics

Abstract

Granular silver films deposited on a thin insulating film of amorphous hydrogenated carbon (a-C:H) and transparent conducting electrode (polycrystalline indium tin oxide (ITO) layer) have been investigated by spectroscopy and microscopy methods. The extinction spectra of silver films on the surface of these materials are found to be significantly different. An annealing of silver films causes a blue shift of the peak of plasmon resonance band in the spectrum of silver nanoparticles: by 16 nm on the a-C:H surface and by 94 nm on the ITO surface. Silver films on the surface of a-C:H films are characterized by a narrower band in the extinction spectrum, which is peaked at 446 nm. The changes observed in the optical density of Ag films are related to the change in size and area of nanoparticles. The results of spectral studies of Ag films are in agreement with the data on the nanostructure obtained by scanning electron microscopy and statistical image processing. The spectra of granular silver films are shown to correlate well with the nanoparticle distribution function over the film area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, Nature Mater. 7, 442 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, Nature Nanotechnol. 1, 47 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    C. Novo, M. A. Funston, and P. Mulvaney, Nature Nanotechnol. 3, 598 (2008).CrossRefGoogle Scholar
  4. 4.
    R. Duan, J. Yuan, Y. Quan, H. Yang, M. Xi, and Q. Zhao, Int. J. Nanomed. 9, 1097 (2014).Google Scholar
  5. 5.
    Y. Hong, M. Ku, E. Lee, J. S. Suh, Y. M. Huh, D. S. Yoon, and J. Yang, J. Biomed. Opt. 19, 051202 (2013).CrossRefGoogle Scholar
  6. 6.
    T. Ghodselahia, T. Neishaboorynejad, and S. Arsalani, Appl. Surf. Sci. 343, 194 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    T. A. Vartanyan, I. A. Gladskikh, N. B. Leonov, and S. G. Przhibel’skii, Phys. Solid State 56, 816 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    D. Franklin, Y. Chen, Ab. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, Nature Commun. 6, 7337 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Konshina, Tech. Phys. 43, 97 (1998).CrossRefGoogle Scholar
  10. 10.
    L. Zhang, H. Xu, Zh. Wang, X. Zhao, J. Ma, and Y. Liu, Mater. Lett. 154, 98 (2015).CrossRefGoogle Scholar
  11. 11.
    T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Trager, Appl. Phys. B 69, 513 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 1087 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Konshina, Semiconductors 33, 451 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    T. A. Vartanyan, N. B. Leonov, and S. G. Przhibel’skii, J. Opt. Technol. 80, 88 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. P. Shcherbinin
    • 1
  • E. A. Konshina
    • 1
  • V. A. Polischuk
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations