Optics and Spectroscopy

, Volume 120, Issue 4, pp 520–528 | Cite as

Generation of singlet oxygen on the surface of metal oxides

  • V. M. Kiselev
  • I. M. Kislyakov
  • A. N. Burchinov
Condensed-Matter Spectroscopy

Abstract

Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron–hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Y. Teoh, R. Amal, and J. Scott, J. Phys. Chem. Lett. 3, 629 (2012).CrossRefGoogle Scholar
  2. 2.
    A. O. Ibhadon and P. Fitzpatrick, Catalysts 3, 189 (2013).CrossRefGoogle Scholar
  3. 3.
    T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, FEMS Microbiol. Lett. 29, 211 (1985).CrossRefGoogle Scholar
  4. 4.
    A. Khaleel, P. N. Kapoor, and K. J. Klabunde, Nanostruct. Mater. 11, 459 (1999).CrossRefGoogle Scholar
  5. 5.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    M. Pelaez, N. T. Nolan, S. C. Pillai, et al., Appl. Catal. B 125, 331 (2012).CrossRefGoogle Scholar
  7. 7.
    A. di Paola, E. García-López, G. Marcì, and L. Palmisano, J. Hazard. Mater. 211–212, 3 (2012).CrossRefGoogle Scholar
  8. 8.
    O. K. Dalrymple, E. Stefanakos, M. A. Trotzb, and D. Y. Goswami, Appl. Catal. B: Environ. 98, 27 (2010).CrossRefGoogle Scholar
  9. 9.
    K. Gohre and G. C. Miller, J. Chem. Soc., Faraday Trans. I 81, 793 (1985).CrossRefGoogle Scholar
  10. 10.
    Y. Nosaka, T. Daimon, A. Y. Nosaka, and Y. Myrakami, Phys. Chem. Chem. Phys. 6, 2917 (2004).CrossRefGoogle Scholar
  11. 11.
    T. Daimon and Y. Nosaka, J. Phys. Chem. C 111, 4420 (2007).CrossRefGoogle Scholar
  12. 12.
    H. Saito and Y. Nosaka, J. Phys. Chem. C 118, 24648 (2014).CrossRefGoogle Scholar
  13. 13.
    T. Daimon, T. Hirakawa, M. Kitazawa, J. Suetake, and Y. Nosaka, Appl. Catal. A: Gen. 340, 169 (2008).CrossRefGoogle Scholar
  14. 14.
    I. M. Belousova, V. P. Belousov, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Quantum Electron. 38, 280 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    I. V. Bagrov, I. M. Belousova, A. S. Grenishin, O. B. Danilov, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, T. D. Murav’eva, and E. N. Sosnov, Quantum Electron. 38, 286 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    I. V. Bagrov, I. M. Belousova, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spectrosc. 113, 57 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spectrosc. 116, 567 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, A. M. Starodubtsev, and A. N. Burchinov, Opt. Spectrosc. 118, 412 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    B. F. Minaev, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 9, 115 (1978).Google Scholar
  20. 20.
    B. F. Minaev, Opt. Spectrosc. 58, 761 (1985).ADSGoogle Scholar
  21. 21.
    R. D. Scurlock and P. R. Ogilby, J. Phys. Chem. 91, 4599 (1987).CrossRefGoogle Scholar
  22. 22.
    R. Schmidt and E. Afshari, J. Phys. Chem. 94, 4377 (1990).CrossRefGoogle Scholar
  23. 23.
    C. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003).CrossRefGoogle Scholar
  24. 24.
    I. Fechetea, Ye. Wang, and J. C. Vedrine, Catal. Today 189, 2 (2012).CrossRefGoogle Scholar
  25. 25.
    A. A. Krasnovsky, A. S. Kozlov, and Ya. V. Roumbal, Photochem. Photobiol. Sci. 11, 988 (2012).CrossRefGoogle Scholar
  26. 26.
    A. Sivéry, F. Anquez, C. Pierlot, et al., Chem. Phys. Lett. 555, 252 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    A. A. Krasnovsky, and A. S. Kozlov, Biophysics 59, 199 (2014).CrossRefGoogle Scholar
  28. 28.
    A. N. Terenin, Photonics of Molecules of Dyes and Related Organic Compounds (Nauka, Leningrad, 1967) [in Russian].Google Scholar
  29. 29.
    S. C. Howells, G. Black, and L. A. Schlie, Synth. Met. 62, 1 (1994).CrossRefGoogle Scholar
  30. 30.
    A. Skumanich, Chem. Phys. Lett. 182, 486 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    H. Yagi, K. Nakajima, K. R. Koswattage, K. Nakagawa, et al., Carbon 47, 1152 (2009).CrossRefGoogle Scholar
  32. 32.
    J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).CrossRefGoogle Scholar
  33. 33.
    J. X. Zheng, G. Ceder, T. Maxisch, W. K. Chim, and W. K. Choi, Phys. Rev. B 73, 104101 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, et al., Opt. Mater. 34, 893 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    M. M. Dubinin, Adsorption and Porosity (Nauka, Moscow, 1972) [in Russian]Google Scholar
  36. 35a.
    M. M. Dubinin, in Progress in Surface and Membrane Science, Ed. by J. F. Danielli, M. D. Rosenberg, and D. A. N. Y. Cadenhead (Academic, New York, 1975).Google Scholar
  37. 36.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, London, 1982).Google Scholar
  38. 37.
    V. B. Fenelonov, Introduction to Physical Chemistry of Formation of Supramolecular Structure of Adsorbents and Catalysts (Sib. Otdel. RAN, Novosibirsk, 2004) [in Russian].Google Scholar
  39. 38.
    V. P. Belousov, I. M. Belousova, A. V. Ermakov, V. M. Kiselev, and E. N. Sosnov, Russ. J. Phys. Chem. A 81, 1650 (2007).CrossRefGoogle Scholar
  40. 39.
    V. M. Kiselev, I. M. Belousova, V. P. Belousov, and E. N. Sosnov, in Carbon Nanomaterials for Gas Adsorption, Ed. by M. L. Terranova, S. Orlanducci, and M. Rossi (Pan Stanford, Singapore, 2013), p. 161.Google Scholar
  41. 40.
    V. P. Belousov, V. M. Kiselev, E. G. Rakov, and A. N. Burchinov, Russ. J. Phys. Chem. A 89, 453 (2015).CrossRefGoogle Scholar
  42. 41.
    H.-J. Freund, Phys. Status Solidi B 192, 407 (1995).ADSCrossRefGoogle Scholar
  43. 42.
    M. Batzill and U. Diebold, Phys. Chem. Chem. Phys. 9, 2307 (2007).CrossRefGoogle Scholar
  44. 43.
    W. Zeng, T. Liu, Z. Wang, S. Tsukimoto, et al., Mater. Trans. 51, 171 (2010).CrossRefGoogle Scholar
  45. 44.
    I. V. Bagrov, I. M. Belousova, A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spectrosc. 112, 935 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. M. Kiselev
    • 1
  • I. M. Kislyakov
    • 2
  • A. N. Burchinov
    • 1
  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations