Optics and Spectroscopy

, Volume 120, Issue 4, pp 654–659 | Cite as

Optical properties of large germanium monocrystals

  • I. A. KaplunovEmail author
  • A. I. Kolesnikov
  • M. Yu. Gavalyan
  • A. V. Belotserkovskiy
Geometrical and Applied Optics


Optical characteristics of germanium monocrystals with a diameter of 150 and 200 mm grown by the Czochralski and directional crystallization methods were studied. We measured spectral transmittance of the monocrystals in the wavelength range of 2.3–25.0 μm, directional transmission and light scattering in the 2.4–3.0 μm range, and noninhomogeneity of the refractive index of monocrystals by the interference technique at 3.39 μm. The measurements were performed on antimony-doped germanium monocrystals with a diameter of 200 mm and thickness of 15 mm (grown by the directional crystallization method) and 18 mm thick (grown by the Czochralski method). Measurements were also performed on a germanium monocrystal with a diameter of 150 mm and thickness of 15 mm grown by the Czochralski method without adding a ligand. The measurement results revealed different optical quality of monocrystals, expressed in the nature and amount of refractive index inhomogeneity, which imposes restrictions on the use of blanks.


Germanium Modulation Transfer Function Spectral Transmittance Czochralski Method Interferometric Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. L. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Berlin, 2007).Google Scholar
  2. 2.
    R. E. Rovinskii, V. E. Rogalin, and V. A. Shershel’, Izv. Akad. Nauk SSSR 47, 406 (1983).Google Scholar
  3. 3.
    O. I. Podkopaev and A. F. Shimanskii, Growthing of Single-Crystal Germanium with Low Content of Dislocations and Impurities (Sib. Fed. Univ., Krasnoyarsk, 2013) [in Russian].Google Scholar
  4. 4.
    I. A. Kaplunov, Yu. M. Smirnov, A. B. Dolmatov, and A. I. Kolesnikov, Perspekt. Mater., No. 4, 35 (2003).Google Scholar
  5. 5.
    R. M. Sullivan, in Proceedings of the Conference of International Society for Optical Engineering on Window and Dome Technologies and Materials XI, Orlando, FL, 2009, Proc. SPIE 7302, 73020L (2009).ADSGoogle Scholar
  6. 6.
    I. A. Kaplunov, Yu. M. Smirnov, and A. I. Kolesnikov, J. Opt. Technol. 72, 214 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    I. A. Kaplunov, A. I. Kolesnikov, and S. L. Shaiovich, Crystallogr. Rep. 50 (Suppl. 1), 546 (2005).Google Scholar
  8. 8.
    E. N. Makolkina and A. K. Przhevuskii, J. Opt. Technol. 70, 819 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    N. I. Astaf’ev, I. M. Nesmelova, and E. A. Nesmelov, J. Opt. Technol. 75, 537 (2008).CrossRefGoogle Scholar
  10. 10.
    V. I. Venzel, A. V. Gorelov, E. S. Egorova, N. Ya. Kuznetsova, E. S. Lavrent’ev, V. S. Obraztsov, and M. I. Sinel’nikov, J. Opt. Technol. 81, 551 (2014).CrossRefGoogle Scholar
  11. 11.
    A. P. Oksanich and V. V. Malevannyi, Visn. Kremenchuk. Univ., No. 1 (78), 18 (2013).Google Scholar
  12. 12.
    I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. A. Kaplunov
    • 1
    Email author
  • A. I. Kolesnikov
    • 1
  • M. Yu. Gavalyan
    • 1
  • A. V. Belotserkovskiy
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations