Optics and Spectroscopy

, Volume 120, Issue 3, pp 482–491 | Cite as

The Influence of the Molecular Structure of Cyanine Dye on the Component Composition of Molecular Layers

  • E. N. Kaliteevskaya
  • V. P. Krutyakova
  • T. K. Razumova
  • A. A. Starovoitov
Physical Optics

Abstract

The formation of the component composition of symmetric cationic cyanine dyes on glass is studied. The absorption spectra of layers of three homologous series of dyes with end heterocyclic groups of different spatial and chemical compositions are measured, and the absorption spectra of monomer components and aggregates are separated. The component compositions of layers of different thicknesses are compared. It is shown that the widening of the absorption spectra of molecular layers against the spectra of ethanol solutions of these compounds is caused mainly by the formation of various monomer stereoisomers and molecular aggregates and their interaction with the substrate surface and the neighborhood. The number of isomer forms and their relative concentrations depend on the layer thickness, the electron donor ability and spatial structure of end groups, and the cation conjugation chain length. The influence of the anion manifests itself only in the concentration ratio of the formed monomers and a small shift of the maxima of their absorption bands. The increase in the number of monomer forms produced in the layer corresponds to the increase in the conjugation chain length. Spatial obstacles created by heterocyclic groups inhibit the formation of definite stereoisomers, which reduces the number of components of the layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Shindy, Mini-Rev. Org. Chem. 9, 352 (2012).CrossRefGoogle Scholar
  2. 2.
    A. A. Ishchenko, Quantum Electron. 24, 471 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    M. Levitusa and S. Ranjita, Q. Rev. Biophys. 44, 123 (2011).CrossRefGoogle Scholar
  4. 4.
    L. Dahne, J. Am. Chem. Soc. 117, 12855 (1995).CrossRefGoogle Scholar
  5. 5.
    A. A. Ishchenko, Structure and Spectral-Luminescent Properties of Polymethine Dyes (Naukova Dumka, Kiev, 1994) [in Russian].Google Scholar
  6. 6.
    A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, Chem. Rev. 100, 1973 (2000).CrossRefGoogle Scholar
  7. 7.
    A. D. Kachkovskii, Theor. Exp. Chem. 41, 139 (2005).CrossRefGoogle Scholar
  8. 8.
    A. D. Kachkovskii, Structure and Colour of Polymethine Dyes (Naukova Dumka, Kiev, 1989) [in Russian].Google Scholar
  9. 9.
    V. V. Shelkovnikov, A. I. Plekhanov, and N. A. Orlova, Nanotechnol. Russ. 3, 521 (2008).CrossRefGoogle Scholar
  10. 10.
    A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B 105, 9960 (2001).CrossRefGoogle Scholar
  11. 11.
    A. Pertegas, D. Tordera, J. J. Serrano-Perez, E. Orti, and H. J. Bolink, J. Am. Chem. Soc. 135, 18008 (2013).CrossRefGoogle Scholar
  12. 12.
    P.-A. Bouit, C. Aronica, L. Toupet, B. le Guennic, C. Andraud, and O. Maury, J. Am. Chem. Soc. 132, 4328 (2010).CrossRefGoogle Scholar
  13. 13.
    A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, S. L. Yefimova, Yu. V. Malyukin, and A. I. Plekhanov, J. Phys. Chem. C 118, 7599 (2014).CrossRefGoogle Scholar
  14. 14.
    I-Im. S. Lim, F. Goroleski, D. Mott, N. Kariuki, W. Ip, J. Luo, and C. J. Zhong, J. Phys. Chem. B 110, 6673 (2006).CrossRefGoogle Scholar
  15. 15.
    N. A. Toropov, P. S. Parfenov, and T. A. Vartanyan, J. Phys. Chem. C 118, 18010 (2014).CrossRefGoogle Scholar
  16. 16.
    N. A. Toropov, E. N. Kaliteevskaya, V. P. Krutyakova, N. B. Leonov, V. A. Polishchuk, V. V. Zakharov, and T. A. Vartanyan, J. Opt. Technol. 81, 231 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Kang, Y. Yuan, Z. Sun, and Z. Wang, Chin. Opt. Lett. 5, 428 (2007).ADSGoogle Scholar
  18. 18.
    M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and Ph. Tinnefeld, J. Am. Chem. Soc. 127, 3801 (2005).CrossRefGoogle Scholar
  19. 19.
    J. M. Hales, S. Barlow, H. Kim, S. Mukhopadhyay, J.-L. Bredas, J. W. Perry, and S. R. Marder, Chem. Mater. 26, 549 (2014).CrossRefGoogle Scholar
  20. 20.
    J. F. Chang, F. C. Chien, C. W. Cheng, C. C. Lin, Y. H. Lu, H. S. Wei, C. C. Jaing, and C. C. Lee, Opt. Express 22, 29388 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    R. Steiger, R. Puqin, and J. Heier, Colloids Surf. B: Biointerfaces 72, 484 (2009).CrossRefGoogle Scholar
  22. 22.
    E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, Opt. Spectrosc. 97, 901 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    A. A. Starovoitov, T. K. Razumova, E. N. Kaliteevskaya, and V. P. Krutyakova, J. Opt. Technol. 81, 289 (2014).CrossRefGoogle Scholar
  24. 24.
    V. V. Egorov and M. V. Alfimov, Phys. Usp. 50, 985 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    S. I. Gerasimova, E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, J. Opt. Technol. 75, 345 (2008).CrossRefGoogle Scholar
  26. 26.
    T. K. Razumova and A. N. Tarnovskii, Opt. Spectrosc. 73, 662 (1992).ADSGoogle Scholar
  27. 27.
    A. N. Tarnovskii, T. K. Razumova, E. P. Shchelkina, and T. V. Veselova, Opt. Spectrosc. 74, 65 (1993).ADSGoogle Scholar
  28. 28.
    R. Gadonas, E. N. Kaliteevskaya, V. Krasauskas, A. Pyalakauskas, T. K. Razumova, A. N. Tarnovskii, and E. P. Shchelkina, Opt. Spectrosc. 68, 184 (1990).ADSGoogle Scholar
  29. 29.
    T. K. Razumova, A. N. Tarnovskii, and E. P. Shchelkina, Opt. Spectrosc. 72, 604 (1992).ADSGoogle Scholar
  30. 30.
    Ya. V. Batyuto, T. K. Razumova, and A. N. Tarnovskii, Opt. Spectrosc. 93, 399 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    M. M. Awad, P. K. McCarythy, and G. J. Blanchard, J. Phys. Chem. 98, 1454 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. N. Kaliteevskaya
    • 1
  • V. P. Krutyakova
    • 1
  • T. K. Razumova
    • 1
  • A. A. Starovoitov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations