Advertisement

Optics and Spectroscopy

, Volume 120, Issue 5, pp 773–780 | Cite as

A Luneburg lens in moving coordinates

  • V. O. Gladyshev
  • A. A. Tereshin
Physical Optics

Abstract

The reflection of light rays by a reference microsatellite of new design, which moves with a velocity of 7500 m/s along a near-Earth orbit with a radius of 835 km, is calculated. The microsatellite is a bilayer Luneburg lens with an outer radius of 85 mm. The process of propagation of electromagnetic radiation in a Luneburg lens is analyzed for the first time with the effects of electrodynamics of moving media and optical glass dispersion taken into account. It is demonstrated that the lens motion leads to additional deflection and mixing of rays with various angles of incidence. The obtained results allow one to improve the accuracy of determination of satellite coordinates and open up new opportunities for tests of the theory of relativity and electrodynamics.

Keywords

Incidence Angle Material Dispersion Corner Reflector Spherical Reflector Additional Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Otsubo, H. Kunimori, H. Noda, and H. Hanada, Adv. Space Res. 45, 733 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    V. Handerek, H. McArdle, T. Williams, N. Psaila, and L. Laycock, Proc. SPIE—Int. Soc. Opt. Eng. 5986, 1117 (2005). doi 10.1117/12.63055610.1117/12.630556Google Scholar
  3. 3.
    N. C. Ancheier, B. E. Bernacki, and K. Krishnaswami, FY 2007 Final Report (Pacif. Northwest Natl. Laboratory, 2008), p. 1.Google Scholar
  4. 4.
    N. C. Ancheier, B. E. Bernacki, N. A. Klymyshyn, K. Krishnaswami, and C. P. Rodriguez, FY 2008 Final Report (Pacif. Northwest Natl. Laboratory, 2009), p. 1.Google Scholar
  5. 5.
    N. C. Ancheier, B. E. Bernacki, and H. A. Qiao, FY 2011 Final Report (Pacif. Northwest Natl. Laboratory, 2011), p. 1.Google Scholar
  6. 6.
    B. E. Bernacki, N. C. Anheier, K. Krishnaswami, and B. D. Cannon, Proc. SPIE—Int. Soc. Opt. Eng. 6940, 1 (2008).Google Scholar
  7. 7.
    V. P. Vasiliev, I. S. Gashkin, M. S. Belov, and V. D. Shargorodsky, in Proceedings of the 11th International Workshop on Laser Ranging. Deggendorf, Germany, 1998. http://cddisgsfcnasagov/lw11/Google Scholar
  8. 8.
    V. D. Shargorodsky, V. P. Vasiliev, N. M. Soyuzova, V. B. Burmistrov, I. S. Gashkin, M. S. Belov, T. I. Khorosheva, and E. A. Nikolaev, in Proceedings of the 12th International Workshop on Laser Ranging, Matera, Italy, 2000. http://cddisgsfcnasagov/lw12/docs/Shargorodsky_et_al_Spherical%20RetroreflectorpdfGoogle Scholar
  9. 9.
    V. B. Burmistrov, N. N. Parkhomenko, Y. A. Roy, V. D. Shargorodsky, V. P. Vasiliev, J. J. Degnan, S. Habib, V. D. Glotov, and N. L. Sokolov, in Proceediongs of the 13th International Workshop on Laser Ranging, Washington DC, USA, 2002. http://cddisgsfcnasa. gov/lw13/docs/papers/target_vasiliev_1mpdfGoogle Scholar
  10. 10.
    V. B. Burmistrov, N. N. Parkhomenko, V. D. Shargorodsky, and V. P. Vasiliev, in Proceedings of the 14th International Workshop on Laser Ranging, San Fernando, Spain, 2004. http://cddisgsfcnasagov/lw14/docs/papers/tar3a_vbmpdfGoogle Scholar
  11. 11.
    V. D. Shargorodsky, V. P. Vasiliev, M. S. Belov, I. S. Gashkin, and N. N. Parkhomenko, in Proceedings of the 15th International Workshop on Laser Ranging, Canberra, Australia, 2006, p. 566. http://cddisgsfcnasagov/lw15/docs/papers/Spherical%20Glass%20Target%20 MicrosatellitepdfGoogle Scholar
  12. 12.
    D. Kucharski, G. Kirchner, Hyung-Chul Lim, and F. Koidl, Adv. Space Res. 48, 1335 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    B. M. Bolotovskii and S. N. Stolyarov, Sov. Phys. Usp. 32, 813 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    V. O. Gladyshev, P. S. Tiunov, A. D. Leont’ev, T. M. Gladysheva, and E. A. Sharandin, Tech. Phys. 57, 1519 (2012).CrossRefGoogle Scholar
  15. 15.
    V. O. Gladyshev, T. M. Gladysheva, M. Dashko, N. Trofimov, and E. A. Sharandin, Tech. Phys. Lett. 33, 905 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    M. Lutz, Learning Python, 5th ed. (O’Reilly Media, 2013).zbMATHGoogle Scholar
  17. 17.
    E. Bessert, SciPy and NumPy (O’Reilly Media, 2013), p. 82.Google Scholar
  18. 18.
    V. O. Gladyshev, D. I. Portnov, V. L. Kauts, and E. A. Sharandin, Opt. Spectrosc. 115, 349 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    V. O. Gladyshev and D. I. Portnov, Tech. Phys. 60, 575 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations