Optics and Spectroscopy

, Volume 120, Issue 3, pp 415–422 | Cite as

Spectral and Luminescence Properties of Sols and Coatings Containing CdS/ZnS QDs and Polyvinylpyrrolidone

  • K. S. Evstrop’ev
  • Yu. A. Gatchin
  • S. K. Evstrop’ev
  • K. V. Dukel’skii
  • I. M. Kislyakov
  • N. A. Pegasova
  • I. V. Bagrov
Condensed-Matter Spectroscopy

Abstract

Spectral and luminescence properties of sols and composition coatings containing cadmium and zinc sulfides and high-molecular polyvinylpyrrolidone have been studied. It is shown that the absorption spectra of colloidal solutions in the UV spectral range are determined by the quantum-confinement effect and exhibit a dependence of the absorption edge on the size of cadmium sulfide nanocrystals. The size of forming particles of metal sulfides has been found to decrease with an increase in the relative content of polyvinylpyrrolidone. It is shown that the order of mixing of the initial components when synthesizing sols also determines the difference in the size of forming particles and their spectral properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
  2. 2.
    H. S. Mansur, A. A. P. Mansur, and J. C. Gonzalez, Polymer 52, 1045 (2011).CrossRefGoogle Scholar
  3. 3.
    Jae Ik Kim, Jongmin Kim, Junhee Lee, Dae-Ryong Jung, Hoechang Kim, Hongsik Choi, Sungjun Lee, Sujin Byun, Suji Kang, and Byungwoo Park, Nanoscale Res. Lett. 7, 482 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    M. Thambiadurai, N. Murugan, N. Muthukumarasamy, S. Agilan, S. Vasantha, and R. Balasundaraprabhu, J. Mater. Sci. Technol. 26, 193 (2010).CrossRefGoogle Scholar
  5. 5.
    I. A. Bagrov, V. V. Danilov, S. K. Evstropiev, V. M. Kiselev, I. M. Kislyakov, A. S. Panfutova, and A. I. Khrebtov, Tech. Phys. Lett. 41, 65 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    N. G. Piven, L. P. Shcherbak, P. I. Feichuk, S. M. Kalitchuk, S. G. Krylyuk, and D. V. Korbutyak, Kondens. Sredy Mezhfaz. Granitsy 8, 315 (2006).Google Scholar
  7. 7.
    S. Vineet, P. K. Sharma, and Ch. Pratima, Mater. Charact. 62, 43 (2011).CrossRefGoogle Scholar
  8. 8.
    N. Ghows and M. H. Entezari, Ultrason. Sonochem. 18, 269 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Yu. Koroleva, E. V. Gulyaeva, and E. V. Yurtov, Russ. J. Inorg. Chem. 57, 320 (2012).CrossRefGoogle Scholar
  10. 10.
    S. K. Evstropiev, I. M. Kislyakov, I. V. Bagrov, and I. M. Belousova, Polym. Adv. Technol. 26 (9) (2015).  10.1002/pat.3642.Google Scholar
  11. 11.
    I. A. Bagrov, I. M. Belousova, S. K. Evstropiev, and I. M. Kislyakov, Polym. Adv. Technol. 26, 1097 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, and R. Jayavel, Nanomater. Nanotechnol. 1 (2), 42 (2011). www.intechweb.org Google Scholar
  13. 13.
    M. V. Artemyev, S. V. Gaponenko, I. N. Germanenko, and A. M. Kapitonov, Chem. Phys. Lett. 243, 450 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    Chengbin Jing, Xinguang Xu, Xiaoliang Zhang, Zhibo Liu, and Junhao Chu, J. Phys. D: Appl. Phys. 42, 047402 (2009). doi:  10.1088/0022-3727/42/7/075402 Google Scholar
  15. 15.
    T. K. Chaudhuri and M. G. Patel, in Proceedings of the International Conference on Physics of Emerging Functional Materials PEFM-2010, AIP Conf. Proc. 1313, 275 (2010).ADSGoogle Scholar
  16. 16.
    S. Vempati, Y. Ertas, and T. Uyar, J. Phys. Chem. C 117, 21609 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Pattabi, B. S. Amma, and K. Manzoor, Mater. Res. Bull. 42, 828 (2007).CrossRefGoogle Scholar
  18. 18.
    G. Ghosh, M. K. Naskar, A. Patra, and M. Chatterjee, Opt. Mater. 28, 1047 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    S. K. Evstropiev, Yu. A. Gatchin, K. S. Evstropiev, K. V. Dukelsky, and I. M. Kislyakov, Opt. Spectrosc. 119, 943 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    K. Sato, S. Kojima, S. Hattori, T. Chiba, K. Ueda-Sarson, T. Torimoto, Y. Tachibana, and S. Kuwabata, Nanotecnology 18, 465702 (2007). doi:  10.1088/0957-4484/18/46/465702 ADSCrossRefGoogle Scholar
  21. 21.
    G. Rudko, A. Kovalchuk, V. Fediv, W. M. Chen, and I. Buyanova, Nanoscale Res. Lett. 10, 81 (2015). doi:  10.1186/s11671-015-0787-5 ADSCrossRefGoogle Scholar
  22. 22.
    Jinhong Niu, Weiwei Xu, Huaibin Shen, Sen Li, Hongzhe Wang, and Ling Song Li, Bull. Korean Chem. Soc. 33, 393 (2012).CrossRefGoogle Scholar
  23. 23.
    Jinsong Liu, Chuanbao Zhao, Ziquan Li, Jiankang Chen, Hengzhi Zhou, Shanqun Gu, Youhong Zeng, Yongchan Li, and Youngbing Huang, J. Alloys Compd. 509, 9428 (2011).CrossRefGoogle Scholar
  24. 24.
    Mee Rahn Kim, Young-Mee Kang, and Du-Jeon Jang, J. Phys. Chem. C 111, 18507 (2007).CrossRefGoogle Scholar
  25. 25.
    S. Vempati, Y. Ertas, and T. Uyar, J. Phys. Chem. C 117, 21609 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Pattabi, B. S. Amma, and K. Manzoor, Mater. Res. Bull. 42, 828 (2007).CrossRefGoogle Scholar
  27. 27.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968).CrossRefGoogle Scholar
  28. 28.
    N. S. Kozhevnikova, S. A. Vorokh, and A. A. Uritskaya, Russ. Chem. Rev. 84, 225 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
  30. 30.
    V. Pal, G. Loaiza-González, A. Bautista-Hernández, and O. Vázquez-Cuchillo, Superfic. Vacio 11, 40 (2000).Google Scholar
  31. 31.
    M. D. Garrett, A. D. Dudes III, J. R. McBride, N. J. Smith, S. J. Pennycook, and S. J. Rosenthal, J. Phys. Chem. C 112, 12736 (2008).CrossRefGoogle Scholar
  32. 32.
    A. Schüler, M. Python, M. valle del Olmo, and E. de Chambrier, Solar Energy 81, 1159 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    L. S. Pedrotti and D. C. Reynolds, Phys. Rev. 119, 1897 (1960).ADSCrossRefGoogle Scholar
  34. 34.
    S. Vempati, Y. Ertas, and T. Uyar, J. Phys. Chem. C 117, 21609 (2013).CrossRefGoogle Scholar
  35. 35.
    R. N. Khramov, S. I. Anisimov, M. S. Vakshtein, G. A. Davydova, A. A. Manokhin, S. I. Paskevich, I. I. Selezneva, N. B. Simonova, and L. I. Fakhranurova, RF Patent No. 2497676 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. S. Evstrop’ev
    • 1
  • Yu. A. Gatchin
    • 1
  • S. K. Evstrop’ev
    • 1
    • 2
  • K. V. Dukel’skii
    • 1
    • 3
  • I. M. Kislyakov
    • 1
    • 2
  • N. A. Pegasova
    • 4
  • I. V. Bagrov
    • 2
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Vavilov State Optical InstituteSt. PetersburgRussia
  3. 3.Bonch-Bruevich St. Petersburg State University of TelecommunicationsSt. PetersburgRussia
  4. 4.Irkutsk State UniversityIrkutskRussia

Personalised recommendations