Advertisement

Optics and Spectroscopy

, Volume 120, Issue 3, pp 477–481 | Cite as

Optical Properties of Planar Nanostructures Based on Semiconductor Quantum Dots and Plasmonic Metal Nanoparticles

  • A. G. Bakanov
  • N. A. Toropov
  • T. A. Vartanyan
Physical Optics

Abstract

The optical properties of a composite material consisting of a thin polymer film, which is activated by semiconductor CdSe/ZnS quantum dots (QDs) and silver nanoparticles, on a transparent dielectric substrate have been investigated. It is revealed that the presence of silver nanoparticles leads to an increase in the QD absorption (by a factor of 4) and in the fluorescence intensity (by a factor of 10), whereas the fluorescence time drops by a factor of about 10. Excitation of the composite medium by a pulsed laser is found to result in narrowing of the fluorescence band and a sublinear dependence of its intensity on the pulse energy. In the absence of silver nanoparticles, the fluorescence spectrum of QDs is independent of the excitation-pulse energy density, and the fluorescence intensity depends linearly on the pulse energy in the entire range of energy densities, up to 75 mJ/cm2.

Keywords

PMMA Silver Nanoparticles Optical Parametric Oscillator Quartz Substrate PMMA Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Tang, Q. Yang, T. Wu, L. Liu, Y. Ding, and B. Yu, Langmuir 30, 6324 (2014).CrossRefGoogle Scholar
  2. 2.
    W. Deng and E. Goldys, Analyst 139, 5321 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Oleinikov, A. V. Sukhanova, and I. R. Nabiev, Ross. Nanotekhnol., Nos. 1–2, 160 (2007).Google Scholar
  4. 4.
    A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, Labor. Invest. 82, 1259 (2002).CrossRefGoogle Scholar
  5. 5.
    K. Boeneman, J. Delehanty, K. Susumu, M. Stewart, J. Deschamps, and I. Medintz, Adv. Exp. Med. Biol. 733, 63 (2012).CrossRefGoogle Scholar
  6. 6.
    Z. Yue, F. Lisdat, W. Parak, S. Hickey, L. Tu, N. Sabir, D. Dorfs, and N. Bigall, ACS Appl. Mater. Interfaces 5, 2800 (2013).CrossRefGoogle Scholar
  7. 7.
    V. Amendola, O. Bakr, and F. Stellacci, Plasmonics 5, 85 (2010).CrossRefGoogle Scholar
  8. 8.
    H. Encai, G. Schatz, and J. Hupp, J. Fluoresc. 14, 331 (2004).CrossRefGoogle Scholar
  9. 9.
    O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Nano Lett. 2, 1449 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. G. Bakanov, N. A. Toropov, and T. A. Vartanyan, Opt. Spectrosc. 118, 290 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    A. Samanta, Y. Zhou, S. Zou, and H. Yan, Nano Lett. 14, 5052 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    K. Dae Gwi, H. Yokota, T. Taniguchi, and M. Nakayama, J. Appl. Phys. 114, 154307 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    E. M. Purcell, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  14. 14.
    H. Wang, L. Xu, R. Zhang, et al., Nanoscale Res. Lett. 10, 128 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  16. 16.
    J. Laverdant et al., Materials 4, 1182 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. G. Bakanov
    • 1
  • N. A. Toropov
    • 1
  • T. A. Vartanyan
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations