Optics and Spectroscopy

, Volume 120, Issue 2, pp 286–293 | Cite as

Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

Condensed-Matter Spectroscopy


This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Spectroscopy Rotational Resonance Magic Angle Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. H. Park, B. B. Das, F. Casagrande, Ye Tian, H. J. Nothnagel, M. Chu, H. Kiefer, K. Maier, A. A. de Angelis, F. M. Marassi, and S. J. Opella, Nature 491, 779 2012.ADSCrossRefGoogle Scholar
  2. 2.
    P. J. E. Verdegem, P. H. M. Bovee-Geurts, W. J. de Grip, J. Lugtenburg, and H. J. M. de Groot, Biochemistry 38, 11316 1999.CrossRefGoogle Scholar
  3. 3.
    P. J. R. Spooner, J. M. Sharples, M. A. Verhoeven, J. Lugtenburg, C. Glaubitz, and A. Watts, Biochemistry 41, 7549 2002.CrossRefGoogle Scholar
  4. 4.
    X. Feng, P. J. E. Verdegem, M. Edén, D. Sandström, Y.K. Lee, P. H. M. Bovee-Geurts, W. J. de Grip, J. Lugtenburg, H. J. M. de Groot, and M. H. Levitt, J. Biomol. NMR 16, 1 2000.CrossRefGoogle Scholar
  5. 5.
    S. R. Kiihne, A. F. L. Creemers, W. J. de Grip, P. H. M. Bovee-Geurts, J. Lugtenburg, and H. J. M. de Groot, J. Am. Chem. Soc. 127, 5734 2005.CrossRefGoogle Scholar
  6. 6.
    A. B. Patel, E. Crocker, M. Eilers, A. Hirshfeld, M. Sheves, and S. O. Smith, Proc. Natl. Acad. Sci. USA 101, 10048 2004.ADSCrossRefGoogle Scholar
  7. 7.
    S. Ahuja, E. Crocker, M. Eilers, V. Hornak, A. Hirshfeld, M. Ziliox, N. Syrett, P. J. Reeves, H. G. Khorana, M. Sheves, and S. O. Smith, J. Biol. Chem. 284, 10190 2009.CrossRefGoogle Scholar
  8. 8.
    G. F. J. Salgado, A. V. Struts, K. Tanaka, N. Fujioka, K. Nakanishi, and M. F. Brown, Biochemistry 43, 12819 2004.CrossRefGoogle Scholar
  9. 9.
    A. V. Struts, G. F. J. Salgado, K. Tanaka, S. Krane, K. Nakanishi, and M. F. Brown, J. Mol. Biol. 372, 50 2007.CrossRefGoogle Scholar
  10. 10.
    A. V. Struts, G. F. J. Salgado, K. Martínez-Mayorga, and M. F. Brown, Nat. Struct. Mol. Biol. 18, 392 2011.CrossRefGoogle Scholar
  11. 11.
    D. L. Farrens, C. Altenbach, K. Yang, W. L. Hubbell, and H. G. Khorana, Science 274, 768 1996.ADSCrossRefGoogle Scholar
  12. 12.
    G. Jeschke, M. Pannier, and H. W. Spiess, Biol. Magn. Reson. 19, 493 2000.CrossRefGoogle Scholar
  13. 13.
    C. Altenbach, A. K. Kusnetzow, O. P. Ernst, K. P. Hofmann, and W. L. Hubbell, Proc. Natl. Acad. Sci. USA 105, 7439 2008.ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Struts, G. F. J. Salgado, and M. F. Brown, Proc. Natl. Acad. Sci. USA 108, 8263 2011.CrossRefGoogle Scholar
  15. 15.
    K. Tanaka, A. V. Struts, S. Krane, N. Fujioka, G. F. J. Salgado, K. Martínez-Mayorga, M. F. Brown, and K. Nakanishi, Bull. Chem. Soc. Jpn. 80, 2177 2007.CrossRefGoogle Scholar
  16. 16.
    P. J. R. Spooner, J. M. Sharples, S. C. Goodall, H. Seedorf, M. A. Verhoeven, J. Lugtenburg, P. H. M. Bovee-Geurts, W. J. de Grip, and A. Watts, Biochemistry 42, 13371 2003.CrossRefGoogle Scholar
  17. 17.
    E. Crocker, M. Eilers, S. Ahuja, V. Hornak, A. Hirshfeld, M. Sheves, and S. O. Smith, J. Mol. Biol. 357, 163 2006.CrossRefGoogle Scholar
  18. 18.
    S. Ahuja, V. Hornak, E. C. Y. Yan, N. Syrett, J. A. Goncalves, A. Hirshfeld, M. Ziliox, T. P. Sakmar, M. Sheves, P. J. Reeves, S. O. Smith, and M. Eilers, Nat. Struct. Mol. Biol. 16, 168 2009.CrossRefGoogle Scholar
  19. 19.
    K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. le Trong, D.C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, and M. Miyano, Science 289, 739 2000.ADSCrossRefGoogle Scholar
  20. 20.
    D. C. Teller, T. Okada, C. A. Behnke, K. Palczewski, and R. E. Stenkamp, Biochemistry 40, 7761 2001.CrossRefGoogle Scholar
  21. 21.
    T. Okada, M. Sugihara, A.-N. Bondar, M. Elstner, P. Entel, and V. Buss, J. Mol. Biol. 342, 571 2004.CrossRefGoogle Scholar
  22. 22.
    J. Standfuss, P. C. Edwards, A. D’Antona, M. Fransen, G. Xie, D. D. Oprian, and G. F. X. Schertler, Nature 471, 656 2011.ADSCrossRefGoogle Scholar
  23. 23.
    H.-W. Choe, Y. J. Kim, J. H. Park, T. Morizumi, E. F. Pai, N. Krauß, K. P. Hofmann, P. Scheerer, and O. P. Ernst, Nature 471, 651 2011.ADSCrossRefGoogle Scholar
  24. 24.
    X. Deupi, P. Edwards, A. Singhal, B. Nickle, D. Oprian, G. Schertler, and J. Standfuss, Proc. Natl. Acad. Sci. USA 109, 119 2012.ADSCrossRefGoogle Scholar
  25. 25.
    R. Nygaard, Y. Zou, R. O. Dror, T. J. Mildorf, D. H. Arlow, A. Manglik, A. C. Pan, C. W. Liu, J. J. Fung, M. P. Bokoch, F. S. Thian, T. S. Kobilka, D. E. Shaw, L. Mueller, R. S. Prosser, and B. K. Kobilka, Cell 152, 532 2013.CrossRefGoogle Scholar
  26. 26.
    D. J. E. Ingram, Biological and Biochemical Applications of Electron Spin Resonance (Adam Hilger, London, 1969).Google Scholar
  27. 27.
    I. D. Pogozheva, V. A. Kuznetsov, V. A. Lifshits, I. B. Fedorovich, and M. A. Ostrovskii, Biol. Membr. 2, 880 1985.Google Scholar
  28. 28.
    G. R. Kalamkarov and M. A. Ostrovskii, Molecular Mechanisms of Visual Reception (Nauka, Moscow, 2002) [in Russian].Google Scholar
  29. 29.
    G. I. Likhtenshtein, Method of Spin Labels in Molecular Biology (Nauka, Moscow, 1974) [in Russian].Google Scholar
  30. 30.
    B. Knierim, K. P. Hofmann, O. P. Ernst, and W. L. Hubbell, Proc. Natl. Acad. Sci. USA 104, 20290 2007.ADSCrossRefGoogle Scholar
  31. 31.
    A. V. Struts, A. V. Barmasov, and M. F. Brown, Opt. Spectrosc. 118, 711 2015.ADSCrossRefGoogle Scholar
  32. 32.
    M. Mahalingam, K. Martínez-Mayorga, M. F. Brown, and R. Vogel, Proc. Natl. Acad. Sci. USA 105, 17795 2008.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Struts
    • 1
    • 2
    • 3
  • A. V. Barmasov
    • 1
    • 2
  • M. F. Brown
    • 3
  1. 1.St. Petersburg State Medical UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.University of ArizonaTucsonUSA

Personalised recommendations