Optics and Spectroscopy

, Volume 119, Issue 6, pp 955–968 | Cite as

Inductive effect of crystalline nucleus on the structure of its local environment in the process of quartz glass crystallization

  • V. M. Zolotarev
  • D. V. Pan’kin
  • A. A. Shimko
  • I. A. Kasatkin
Condensed-Matter Spectroscopy


The morphology and the structural and chemical properties of crystalline formations appearing on the surface of commercial quartz glasses at the beginning of the induction stage upon heating at temperatures of 1000–1300°C are studied by optical polarization microscopy, μ-Fourier transform infrared spectroscopy, and X-ray diffraction. It is shown that crystalline island nuclei induce crystallization not only in the local environment of the surface layer, but also in the glass bulk at a depth of up to ≈200 μm. Crystalline nuclei in the center of islands often have an imperfect crystal structure formed by intermediate mesophases based on individual low-symmetry SiO4 tetrahedra. However, the induced phase at the periphery of these nuclei has a well-ordered crystal structure consisting mainly of α-SiO2 (quartz) and/or α-cristobalite. The proportion of these two phases depends on the glass heating temperature, namely, at 1000°C, the induced structure for the most part contains α-SiO2, while α-cristobalite dominates at 1300°C.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. K. Leko and O. V. Mazurin, Properties of Vitreous Silica (Nauka, Leningrad, 1985) [in Russian].Google Scholar
  2. 2.
    V. K. Leko, in Nucleation Theory and Application, Ed. by W. P. Schmeltzer, G. Ropke, and V. B. Priezzhev (JINR, Dubna, 2008), p. 109.Google Scholar
  3. 3.
    O. V. Mazurin, M. V. Strel’tsina, and T. P. Shvaiko-Shvaikovskaya, Properties of Glasses and Glass-Forming Melts: A Handbook, in 6 vols. (Leningrad, 1973, 1980), Vols. 1, 4 [in Russian].Google Scholar
  4. 4.
    A. G. Vlasov, V. A. Florinskaya, V. N. Morozov, and E. V. Smirnova, Infrared Spectra of Inorganic Glasses and Crystals (Khimiya, Leningrad, 1974) [in Russian].Google Scholar
  5. 5.
    K. P. Dutova, J. Appl. Spectrosc. 9, 1111 (1968).CrossRefADSGoogle Scholar
  6. 6.
    G. A. Ivanov and V. P. Pervadchuk, Production Technology and Properties of Silica Optic Fibers, The School-Book (Perm. Nats. Issled. Politekh. Univ., Perm, 2011) [in Russian].Google Scholar
  7. 7.
    A. Y. Kulesh, M. A. Eronyan, I. K. Meshkovskiy, V. M. Zolotarev, and M. V. Tomkovich, in Proceedings of the 12th International Conference on Fundamental and Applied Aspects of Physical Chemistry (H-05-P) (Belgrade, Serbia, 2014), p. 612Google Scholar
  8. 8.
    N. Diaz-Mora, E. D. Zanotto, R. Hergt, and R. Muller, J. Non-Cryst. Solids 273, 81 (2000).CrossRefADSGoogle Scholar
  9. 9.
    G. W. Arnold, Radiat. Eff. 47, 15 (1980).CrossRefGoogle Scholar
  10. 10.
    R. Brückner, J. Non-Cryst. Solids 5, 123 (1970).CrossRefADSGoogle Scholar
  11. 11.
    M. L. F. Nascimento and E. D. Zanotto, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 201 (2007).Google Scholar
  12. 12.
    R. Brückner, Encycl. Appl. Phys. 18, 98 (1997).Google Scholar
  13. 13.
    N. G. Ainslie, C. R. Morelock, and D. Turnbull, in Proceedings of the Symposium on Nucleation and Crystallization in Glasses and Melts (Columbus, 1962), p. 97.Google Scholar
  14. 14.
    A. E. Fersman, Selected Works (Akad. Nauk SSSR, Moscow, 1960), Vol. 6 [in Russian].Google Scholar
  15. 15.
    V. A. Popov, Practical Crystal Morphology of Minerals (Ural. Nauch. Tsentr AN SSSR, Sverdlovsk, 1984) [in Russian].Google Scholar
  16. 16.
    M. Yu. Povarennykh and A. G. Zhabin, in Proceedings of the International Scientific Conference Devoted to the Fersman’s 125th Anniversary (Moscow, 2008).Google Scholar
  17. 17.
    I. Fuchs, Y. Aluma, M. Ilan, and Y. Mastai, J. Phys. Chem. B 118, 2104 (2014).Google Scholar
  18. 18.
    V. K. Leko and L. A. Komarova, Fiz. Khim. Stekla 1, 335 (1975).Google Scholar
  19. 19.
    Susumu Horita and Tetsuya Akahori, Jpn. J. Appl. Phys. 53, 030303 (2014).CrossRefADSGoogle Scholar
  20. 20.
    O. Nast, S. Brehme, S. Pritchard, A. G. Aberle, and S. R. Wenham, Sol. Energy Mater. Solar Cell 65, 385 (2001).CrossRefGoogle Scholar
  21. 21.
    O. Nast, PhD Thesis (Philipps Univ. Marburg, Marburg, Lahn, 2000).Google Scholar
  22. 22.
    N. M. Dawley, in Proceedings of the National Nanotechnology Infrastructure Network Research Experience for Undergraduates NNIN REU Research Accomplishment (2010), p. 90.Google Scholar
  23. 23.
    A. P. Sazonenko and V. G. Chekhovskii, Fiz. Khim. Stekla 17, 820 (1991).Google Scholar
  24. 24.
    V. M. Zolotarev, A. N. Bekhterev, V. N. Bekhterev, B. Z. Volchek, and E. N. Vlasova, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt., No. 9 (43) (2007).Google Scholar
  25. 25.
    RRUFF Database: Raman, X-Ray, Infrared, and Chemistry files. http://www/rruff.infoGoogle Scholar
  26. 26.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Pt. A: Theory and Appli cations in Inorganic Chemistry (Wiley, New York, 1997), p. 387.Google Scholar
  27. 27.
    P. Gans, Vibrating Molecules: An Introduction to the Interpretation of Infrared and Raman Spectra (Chapman Hall, London, 1975).Google Scholar
  28. 28.
    N. B. Colthrup and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, San Diego, CA, 1990).Google Scholar
  29. 29.
    E. R. Lippincott, A. V. Valkenburg, C. E. Weir, and E. N. Bunting, J. Res. Nat. Bur. Stand. 61, 61 (1958).CrossRefGoogle Scholar
  30. 30.
    M. C. Tappert, B. Rivard, R. Tappert, and J. Feng, Can. Mineral. 51, 405 (2013).CrossRefGoogle Scholar
  31. 31.
    W. A. Weyl, Sprechsaal 95 (6), 128 (1960).Google Scholar
  32. 32.
    T. G. Fawcett, J. Faber, S. Kabekkodu, F. McClune, and D. Rafaja, in Proceedings of the Conference on Microstructure Analysis in Materials Science, Freiberg, June 15–17, 2005.Google Scholar
  33. 33.
    Y. Liang, C. R. Miranda, and S. Scandoloa, J. Chem. Phys. 125, 194524 (2006).CrossRefADSGoogle Scholar
  34. 34.
    K. S. Finnie, J. G. Thompson, and R. L. Withers, J. Phys. Chem. Solids 55, 23 (1994).CrossRefADSGoogle Scholar
  35. 35.
    R. S. Darling, I-M. Chou, and R. J. Bodnar, Science 276, 91 (1997).CrossRefGoogle Scholar
  36. 36.
    W. W. Schmahl, Eur. J. Mineral. 5, 377 (1993).CrossRefGoogle Scholar
  37. 37.
    V. G. Hill and R. Roy, J. Am. Ceram. Soc. 41, 532 (1958).CrossRefGoogle Scholar
  38. 38.
    M. Dracinsky, L. Benda, and P. Bour, Chem. Phys. Lett., No. 512, 54 (2011).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. M. Zolotarev
    • 1
  • D. V. Pan’kin
    • 2
  • A. A. Shimko
    • 2
  • I. A. Kasatkin
    • 3
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Resource Center for Optical and Laser Materials ResearchSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Research Center for X-Ray Diffraction StudiesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations