Optics and Spectroscopy

, Volume 119, Issue 6, pp 924–931 | Cite as

Spectral-luminescence characteristics of lead sulfide molecular clusters and quantum dots in fluorophosphate glasses

  • Zh. O. Lipatova
  • E. V. Kolobkova
  • N. V. Nikonorov
Condensed-Matter Spectroscopy
  • 44 Downloads

Abstract

PbS molecular clusters and quantum dots (QDs) have been formed by heat treatment in fluorophosphate glasses of the Na2O3–Р2O5–Ga2O3–ALF3–ZnO(S)–PbF2 system, and their spectral-luminescence characteristics have been investigated. It is experimentally shown that the transition from molecular clusters to QDs is accompanied by a stepwise change in the spectrum and luminescence quantum yield. Molecular PbS clusters luminesce in the visible spectral range (1.5–3.5 eV) and QDs luminesce in the IR region (0.6–1.4 eV). The luminescence of molecular PbS clusters is characterized by low quantum yield, which decreases from 10 to 1% with an increase in excitation energy. An increase in nanoparticle size leads to a decrease in the Stokes shift from 80 to 50 meV. The QD luminescence spectrum contains two bands, which are due to transitions from two lower excited states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Gaponenko, K. V. Yumashev, and A. A. Onushchenko, J. Appl. Spectrosc. 77, 663 (2010).CrossRefADSGoogle Scholar
  2. 2.
    B. Vaynberg, M. Matusovsky, M. Rosenbluh, E. Kolobkova, and A. Lipovskii, Opt. Commum. 132, 307 (1996).CrossRefADSGoogle Scholar
  3. 3.
    J. I. Kim, J. Kim, J. Lee, D.-R. Jung, H. Kim, H. Choi, S. Lee, S. Byun, S. Kang, and B. Park, Nanoscale Res. Lett. 7, 482 (2012).CrossRefADSGoogle Scholar
  4. 4.
    V. L. Lyaskovskii, Extended Abstract of Cand. Sci. Dissertation (Moscow, 2007).Google Scholar
  5. 5.
    N. F. Borelly and D. W. Smith, J. Non-Cryst. Solids 80, 25 (1994).CrossRefGoogle Scholar
  6. 6.
    P. A. Loiko, G. E. Rachkovskaya, G. B. Zaharevich, V. S. Gurin, M. S. Gaponenko, and K. V. Yumashev, J. Non-Cryst. Solids 358, 1840 (2012).CrossRefGoogle Scholar
  7. 7.
    R. S. Silver, P. S. Morais, A. M. Alcalde, A. F. G. Monte, F. Qu, and N. O. Dantas, J. Non-Cryst. Solids 352, 3522 (2006).CrossRefADSGoogle Scholar
  8. 8.
    N. O. Dantas, F. Qu, A. F. G. Monte, R. S. Silver, and P. S. Morais, J. Non-Cryst. Solids 352, 3525 (2006).CrossRefADSGoogle Scholar
  9. 9.
    E. V. Kolobkova, D. S. Kukushkin, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, Opt. Spectrosc. 118, 224 (2015).CrossRefADSGoogle Scholar
  10. 10.
    E. V. Kolobkova, D. S. Kukushkin, N. V. Nikonorov, T. A. Shakhverdov, A. I. Sidorov, and V. N. Vasiliev, J. Luminesc. 162, 36 (2015).CrossRefADSGoogle Scholar
  11. 11.
    T. S. Shatskikh, A. S. Perepelitsa, M. S. Smirnov, A. O. Dedikova, B. I. Shapiro, and O. V. Ovchinnikov, RF Patent No. 2540385 (2015).Google Scholar
  12. 12.
    I. A. Bagrov, V. V. Danilov, S. K. Evstrop’ev, V. M. Kiselev, I. M. Kislyakov, A. S. Panfutova, and A. I. Khrebtov, Tech. Phys. Lett. 41, 65 (2015).CrossRefADSGoogle Scholar
  13. 13.
    G. Allan and C. Delerue, Phys. Rev. B 70, 245321 (2004).CrossRefADSGoogle Scholar
  14. 14.
    A. P. Litvin, P. S. Parfenov, E. V. Ushakova, and A. V. Baranov, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt., No. 5 (81), 32 (2012).Google Scholar
  15. 15.
    D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, Chem. Mater. 24, 4417 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Zh. O. Lipatova
    • 1
  • E. V. Kolobkova
    • 1
  • N. V. Nikonorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations