Optics and Spectroscopy

, Volume 119, Issue 6, pp 1015–1021 | Cite as

Simulation of a symmetric optical response from a hybrid-aligned structure of a dual-frequency nematic liquid crystal

Physical Optics
  • 29 Downloads

Abstract

To create a hybrid-aligned structure of a dual-frequency nematic liquid crystal (LC), we have obtained an approximate analytical solution of the system of equations that describes the dynamics of reorientations of the director under the action of a control electric signal of an arbitrary shape. Formulas obtained have been used to simulate a symmetric optical response of the LC structure for a sinusoidal electric pulse. It has been shown that, in terms of the used approximations, the results of the analytical calculation agree well with results of computer simulation and with experiment in the case of small deformations of the LC layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Jewell, T. S. Taphouse, and J. R. Sambles, Appl. Phys. Lett. 87, 021106 (2005).CrossRefADSGoogle Scholar
  2. 2.
    Y.-Q. Lu, X. Liang, Y.-H. Wu, F. Du, and S.-T. Wua, Appl. Phys. Lett. 85, 3354 (2004).CrossRefADSGoogle Scholar
  3. 3.
    J. S. Gwag, K. Sohn, Y.-K. Kim, and J.-H. Kim, Opt. Express 16, 12220 (2008).CrossRefADSGoogle Scholar
  4. 4.
    J.-J. P. Drolet, J. S. Patel, K. G. Haritos, W. Xu, A. Scherer, and D. Psaltis, Opt. Lett. 20, 2222 (1995).CrossRefADSGoogle Scholar
  5. 5.
    C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).CrossRefGoogle Scholar
  6. 6.
    F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).CrossRefGoogle Scholar
  7. 7.
    F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    C.-J. Chen, A. Lien, and M. I. Nathan, J. Appl. Phys. 81, 70 (1997).CrossRefADSGoogle Scholar
  9. 9.
    G. V. Simonenko, V. I. Tsoi, and D. A. Yakovlev, Komp. Opt. 21, 88 (2001).Google Scholar
  10. 10.
    N. J. Mottram and C. V. Brown, Phys. Rev. E 74, 031703 (2006).CrossRefADSGoogle Scholar
  11. 11.
    A. V. Ivanov, D. A. Vakulin, and E. A. Konshina, J. Opt. Technol. 81, 130 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Kresse, Physical Properties of Liquid Crystals: Nematics (IEEE, London, 2001).Google Scholar
  13. 13.
    W. Maier and G. Meier, Z. Naturforsch. A: Phys. Sci. 16, 262 (1961).Google Scholar
  14. 14.
    M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, Phys. Rev. E 76, 061702 (2007).CrossRefADSGoogle Scholar
  15. 15.
    D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, Appl. Opt. 40, 2345 (2001).CrossRefADSGoogle Scholar
  16. 16.
    I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor Francis, London, 2004).Google Scholar
  17. 17.
    A. Kubono, Y. Kyokane, R. Akiyama, and K. Tanaka, Appl. Phys. 90, 5859 (2001).CrossRefGoogle Scholar
  18. 18.
    S. P. Palto, J. Exp. Theor. Phys. 92, 552 (2001).CrossRefADSGoogle Scholar
  19. 19.
    L. M. Blinov, Structure and Properties of Liquid Crystals (Librokom, Moscow, 2013; Springer, Netherlands, 2011).CrossRefGoogle Scholar
  20. 20.
    S. P. Palto, Phys. Usp. 48, 747 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Center of Information Optical TechnologiesITMO UniversitySt. PetersburgRussia

Personalised recommendations