Advertisement

Optics and Spectroscopy

, Volume 119, Issue 5, pp 812–815 | Cite as

Control of photoluminescence of CdSe/ZnS quantum dots in a nematic liquid crystal by an electric field

  • M. A. Kurochkina
  • D. P. Shcherbinin
  • E. A. Konshina
Condensed-Matter Spectroscopy

Abstract

Photoluminescence (PL) spectra of a nematic liquid crystal suspension doped with 10 wt % CdSe/ZnS semiconductor quantum dots (QDs) with a core size of 3.5 nm in a 20-µm thick plane-parallel cell have been investigated. The spectrum of a homogeneously oriented suspension layer exhibits a significant shift of the PL peak by ~83 nm to a wavelength of 676 nm as compared with the QD spectrum in toluene. The application of a dc electric field with a strength of 0.25 V/µm to the cell leads to a slight hypsochromic shift of this peak, the position of which does not change with a further increase in the field strength up to 2 V/µm. The PL intensity changes exponentially and decreases by a factor of two at the field strength of 1 V/µm. The mechanism of PL quenching of QDs in a homogeneously oriented layer of nematic liquid crystal is discussed.

Keywords

Electric Field Strength External Electric Field Nematic Liquid Crystal Auger Recombination Luminescence Quenching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Choudhary, G. Singh, and A. M. Biradar, Nanoscale 6, 7743 (2014).CrossRefADSGoogle Scholar
  2. 2.
    J. Muller, C. Sonnichsen, H. von Poschinger, et al., Appl. Phys. Lett. 81, 171 (2002).CrossRefADSGoogle Scholar
  3. 3.
    R. Kumar and K. K. Raina, Liq. Cryst. 41, 228 (2014).CrossRefGoogle Scholar
  4. 4.
    G. Si, Y. Zhao, Sok Ping Leong Eunice, and Y. J. Liu, Mater. 7, 1296 (2014).CrossRefGoogle Scholar
  5. 5.
    T. Zhang, C. Zhong, and J. Xu, Jpn. J. Appl. Phys. 48, 055002 (2009).CrossRefADSGoogle Scholar
  6. 6.
    W.-T. Chen, P.-S. Chen, and C.-Y. Chao, Jpn. J. Appl. Phys. 48, 015006 (2009).CrossRefADSGoogle Scholar
  7. 7.
    H. Li, S. Xu, H. Wang, et al., ACS Photonics 1, 677 (2014).CrossRefGoogle Scholar
  8. 8.
    A. L. Rodarte, C. G. L. Ferri, C. Gray, et al., Proc. SPIE 8279, 82790H (2012).CrossRefADSGoogle Scholar
  9. 9.
    T. Joshi, P. Ganguly, D. Haranath, et al., Mater. Lett. 114, 156 (2014).CrossRefGoogle Scholar
  10. 10.
    R. Kumar and K. K. Raina, Liq. Cryst. 41, 228 (2014).CrossRefGoogle Scholar
  11. 11.
    H.-C. Teng and Y.-J. Huang, Mol. Cryst. Liq. Cryst. 541, 60 (2011).CrossRefGoogle Scholar
  12. 12.
    A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, et al., ACS Nano 8, 7678 (2014).CrossRefGoogle Scholar
  13. 13.
    L. I. Gurinovich, A. A. Lutic, A. P. Stupak, et al., 77, 120 (2010).Google Scholar
  14. 14.
    J. Thoma, B. Liang, C. Reyner, et al., Appl. Phys. Lett. 102, 013120 (2013).CrossRefADSGoogle Scholar
  15. 15.
    J. E. Cunningham, Mater. Sci. Eng. 25, 155 (1999).CrossRefGoogle Scholar
  16. 16.
    H. Babucke, Semicond. Sci. Technol. 13, 200 (1998).CrossRefADSGoogle Scholar
  17. 17.
    P. Michler, Appl. Phys. Lett. 72, 3320 (1998).CrossRefADSGoogle Scholar
  18. 18.
    D. A. B. Miller, Confined Electrons and Photons, Ed. by B. Burstein and C. Weisbuch (Plenum, New York, 1995), p. 675.Google Scholar
  19. 19.
    Y. Kawakami, Physica B 185, 496 (1993).CrossRefADSGoogle Scholar
  20. 20.
    H. Ikehara, T. Goto, H. Kamiya, et al., Opt. Express 21, 6377 (2013).CrossRefADSGoogle Scholar
  21. 21.
    E. Rothenberg, M. Kazes, E. Shaviv, and U. Banin, Nano Lett. 5, 1581 (2005).CrossRefADSGoogle Scholar
  22. 22.
    J. Muller, J. M. Lupton, P. G. Lagoudakis, et al., Nano Lett. 5, 2044 (2005).CrossRefADSGoogle Scholar
  23. 23.
    R. M. Kraus, P. G. Lagoudakis, A. L. Rogach, et al., Phys. Rev. Lett. 98, 017401 (2007).CrossRefADSGoogle Scholar
  24. 24.
    S.-J. Park, S. Link, W. L. Miller, et al., Chem. Phys. 341, 169 (2007).CrossRefADSGoogle Scholar
  25. 25.
    J. Muller, J. M. Lupton, A. L. Rogach, et al., Phys. Rev. B 72, 205339 (2005).CrossRefADSGoogle Scholar
  26. 26.
    M. A. Kurochkina and E. A. Konshina, Opt. Spectr. 118, 111 (2015).CrossRefADSGoogle Scholar
  27. 27.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, et al., Phys. Rev. Lett. 53, 2173 (1984).CrossRefADSGoogle Scholar
  28. 28.
    D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, Phys. Rev. B 33, 6976 (1986).CrossRefADSGoogle Scholar
  29. 29.
    H.-S. Chen, C.-W. Chen, C.-H. Wang, et al., J. Phys. Chem. C 114, 7995 (2010).CrossRefGoogle Scholar
  30. 30.
    M. V. Artemyev, U. Woggon, H. Jaschinski, et al., J. Phys. Chem. B 104, 11617 (2000).CrossRefGoogle Scholar
  31. 31.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Solid State Commun. 122, 139 (2002).CrossRefADSGoogle Scholar
  32. 32.
    J. Mirzaei, V. Reznikov, and T. Hegmann, J. Mater. Chem. 22, 22350 (2012).CrossRefGoogle Scholar
  33. 33.
    L. J. Martínez-Miranda, K. M. Traister, I. Meléndez-Rodríguez, and L. Salamanca-Riba, Appl. Phys. Lett. 97, 223301 (2010).CrossRefADSGoogle Scholar
  34. 34.
    N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).CrossRefADSGoogle Scholar
  35. 35.
    L. I. Gurinovich, A. A. Lutich, A. P. Stupak, et al., Semiconductors 43, 1008 (2009).CrossRefADSGoogle Scholar
  36. 36.
    C. Wang, M. Shim, and P. Guyot Sionnes, Science 291, 2390 (2001).CrossRefADSGoogle Scholar
  37. 37.
    A. K. Gooding, S. E. Gómez, and P. Mulvaney, ACS Nano 2, 669 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. A. Kurochkina
    • 1
  • D. P. Shcherbinin
    • 1
  • E. A. Konshina
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations