Advertisement

Optics and Spectroscopy

, Volume 119, Issue 6, pp 982–986 | Cite as

X-ray spectral diagnostics of synthetic lanthanide silicates

  • A. N. Kravtsova
  • A. A. Guda
  • A. V. Soldatov
  • J. Goettlicher
  • V. K. Taroev
  • A. A. Kashaev
  • L. F. Suvorova
  • V. L. Tauson
Condensed-Matter Spectroscopy

Abstract

Potassium and rare-earth (Eu, Sm, Yb, Ce) silicate and aluminosilicate crystals are hydrothermally synthesized under isothermal conditions at 500°C and a pressure of 100 MPa. The chemical and structural formulas of the synthesized compounds HK6Eu[Si10O25], K7Sm3[Si12O32], K2Sm[AlSi4O12] · 0.375H2O, K4Yb2[Si8O21], and K4Ce2[Al2Si8O24] are determined. In addition, a synthesis product with Eu, in which the dominant phase is assumed to be K3Eu3+[Si6O15] · 2H2O, is studied. The oxidation state of lanthanides in the silicates under study is determined based on X-ray absorption near-edge structure spectroscopy. The Eu L 3-, Sm L 3-, Yb L 3-, and Ce L 3-edge X-ray absorption spectra of the studied silicates and reference samples are recorded using a Rigaku R-XAS laboratory spectrometer. As reference samples, Eu2+S, Eu3+F3, Eu 2 3+ O3, Sm 2 3+ O3, Yb 2 3+ O3, Yb3+F3, Yb3+Cl3, Ce 2 3+ O3, and Ce4+O2 are used. Comparison of the absorption edge energies of lanthanide silicates and reference samples shows that Eu, Sm, Yb, and Cе in all the samples studied are in the oxidation state 3+. The synthesized silicates will supplement our knowledge of possible rare-earth minerals existing in hydrothermal systems, which is important for analyzing the distribution spectra of rare elements, which are widely used for diagnostics of geochemical processes and determination of sources of ore materials.

Keywords

Oxygen Fugacity Absorption Edge Energy Bunsenite Mineral Formation Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy, Ed. by B. R. Lipin and G. A. McKay (Book Crafters, Inc., Cheilsea, Michigan, 2006), Vol. 21, pp. 1–348.Google Scholar
  2. 2.
    S. A. Repina, Geokhim., No. 9, 919 (2011).Google Scholar
  3. 3.
    S. M. Aksenov, R. K. Rastsvetaeva, V. A. Rassylov, N. B. Bolotina, V. K. Taroev, and V. L. Tauson, Micropor. Mesopor. Mater. 182, 95 (2013).CrossRefGoogle Scholar
  4. 4.
    L. Suvorova, V. Taroev, A. Kashaev, A. Vasiljv, T. Malcherec, and J. Goettlicher, in Proceedings of the 3rd Conference on X-ray Analysis (Ulaanbaatar Univ. Press, 2012), p. 143.Google Scholar
  5. 5.
    S. M. Aksenov, V. A. Rassulova, R. K. Rastsvetaeva, and V. K. Taroev, Crystallogr. Rep. 58 (6), 835 (2013).CrossRefADSGoogle Scholar
  6. 6.
    R. K. Rastsvetaeva, S. M. Aksenov, and V. K. Taroev, Crystallogr. Rep. 55 (6), 1012 (2010).CrossRefGoogle Scholar
  7. 7.
    A. A. Kashaev and A. N. Sapozhnikov, Kristallografiya 23 (5), 956 (1978).Google Scholar
  8. 8.
    A. A. Kashaev, Dokl. Akad. Nauk SSSR 293 (6), 1468 (1987).Google Scholar
  9. 9.
    G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge Univ. Press, 2011).Google Scholar
  10. 10.
    A. V. Soldatov, Zh. Strukt. Khim. 49, 111 (2008).MathSciNetGoogle Scholar
  11. 11.
    A. V. Soldatov, G. Yu. Smolentsev, A. N. Kravtsova, V. L. Mazalova, I. E. Shtekhin, and T. S. Belikova, Zavod. Lab., Diagn. Mater. 74 (10), 28 (2008).Google Scholar
  12. 12.
    N. D. Tailby, A. M. Walker, A. J. Berry, J. Hermann, K. A. Evans, J. A. Mavrogenes, H. St. C. O’Neill, I. S. Rodina, A. V. Soldatov, D. Rubatto, and S. R. Sutton, Geochim. Cosmochim. Acta 75, 905 (2011).CrossRefADSGoogle Scholar
  13. 13.
    I. S. Rodina, A. N. Kravtsova, M. A. Soldatov, A. V. Soldatov, and A. J. Berry, J. Phys.: Conf. Ser. 190, 012181 (2009).ADSGoogle Scholar
  14. 14.
    I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, and A. Dzh. Berri, Opt. Spectrosc. 111 (6), 936 (2011).CrossRefGoogle Scholar
  15. 15.
    I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, G. E. Yalovega, Yu. V. Popov, and N. I. Boiko, Opt. Spectrosc. 115 (6), 856 (2013).CrossRefADSGoogle Scholar
  16. 16.
    http://nanospectr.sfedu.ru.Google Scholar
  17. 17.
    http://nano.sfedu.ru/ckp_r.html.Google Scholar
  18. 18.
    V. B. Nalbandyan, E. A. Zvereva, G. E. Yalovega, I. L. Shukaev, A. P. Ryzhakova, A. A. Guda, A. Stroppa, S. Picozzi, A. N. Vasiliev, and M.-H. Whangbo, Inorg. Chem. 52 (20), 11850 (2013).CrossRefGoogle Scholar
  19. 19.
    M. A. Evsyukova, G. Yalovega, A. Balerna, A. P. Menushenkov, Ya. V. Rakshun, and A. A. Teplov, Physica B 405, 2122 (2010).CrossRefADSGoogle Scholar
  20. 20.
    G. V. Fetisov, Synchrotron Radiation: Methods of Investigation of the Structure of Compounds (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  21. 21.
    Procedure of determination of the oxidation state of atoms in nanomaterials based on the X-ray absorption spectroscopy (document MVI 13–2009). The procedure was developed by Southern Federal University and certified by Federal State Establishment “Rostov Center of Standardization, Metrology and Certification” of Federal Agency for Technical Regulation and Metrology (certificate No. 13/2009 from 09.12.2009).Google Scholar
  22. 22.
    Y. Takahashi, G. R. Kolonin, G. P. Shironosova, I. I. Kupriyanova, T. Uruga, and H. Shimizu, Mineralog. Mag. 69 (2), 179 (2005).CrossRefGoogle Scholar
  23. 23.
    T. Yamamoto and A. Yukumoto, Bunseki Kagaku 62 (6), 555 (2013).CrossRefGoogle Scholar
  24. 24.
    J. Pellicer-Porres, A. Segura, G. Martinez-Criado, U. R. Rodriguez-Mendoza, and V. Lavin, J. Phys.: Condens. Matter 25, 025303 (2013).ADSGoogle Scholar
  25. 25.
    H. Yamaoka, M. Taguchi, A. M. Vlaicu, H. Oohashi, K. Yokoi, D. Horiguchi, T. Tochio, Y. Ito, K. Kawatsura, K. Yamamoto, A. Chainani, S. Shin, M. Shiga, and H. Wada, J. Phys. Soc. Jap. 75 (3), 034702 (2006).CrossRefADSGoogle Scholar
  26. 26.
    T. Yamamoto, T. Matsuyama, T. Tanaka, T. Funabiki, and S. Yoshida, Phys. Chem. Chem. Phys. 1, 2841 (1999).CrossRefGoogle Scholar
  27. 27.
    H. Zao, J. Hu, Q. Zhang, J. Bao, W. Liu, Ch. Gao, and Y. Luo, J. Appl. Polym. Sci. 100, 1294 (2006).CrossRefGoogle Scholar
  28. 28.
    I. Narai-Sabo, Inorganic Crystallochemistry (Izdatel’stvo Akademii Nauk Vengrii, Budapest, 1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. N. Kravtsova
    • 1
  • A. A. Guda
    • 1
  • A. V. Soldatov
    • 1
  • J. Goettlicher
    • 2
  • V. K. Taroev
    • 3
  • A. A. Kashaev
    • 4
  • L. F. Suvorova
    • 3
  • V. L. Tauson
    • 3
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  4. 4.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations